Generating all permutations by context-free grammars in Greibach normal form

نویسنده

  • Peter R. J. Asveld
چکیده

We consider context-free grammars Gn in Greibach normal form and, particularly, in Greibach m-form (m = 1, 2) which generates the finite language Ln of all n! strings that are permutations of n different symbols (n ≥ 1). These grammars are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols and the number of production rules of Gn as functions of n. As in the case of Chomsky normal form these descriptional complexity measures grow faster than any polynomial function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several Aspects of Context Freeness for Hyperedge Replacement Grammars

In this paper we survey several aspects related to normal forms of hyperedge replacement grammars. Considering context free hyperedge replacement grammars we introduce, inspired by string grammars, Chomsky Normal Form and Greibach Normal Form. The algorithm of conversion is quite the same with the algorithm for string grammars. The important difference is related to the fact that hyperedge gram...

متن کامل

Generating All Circular Shifts by Context-Free Grammars in Greibach Normal Form

For each alphabet Σn = {a1, a2, . . . , an}, linearly ordered by a1 < a2 < · · · < an, let Cn be the language of circular or cyclic shifts over Σn, i.e., Cn = {a1a2 · · · an−1an, a2a3 · · · ana1, . . . , ana1 · · · an−2an−1}. We study a few families of context-free grammars Gn (n ≥ 1) in Greibach normal form such that Gn generates Cn. The members of these grammar families are investigated with ...

متن کامل

Quantum automata and quantum grammars

To study quantum computation, it might be helpful to generalize structures from language and automata theory to the quantum case. To that end, we propose quantum versions of finite-state and push-down automata, and regular and context-free grammars. We find analogs of several classical theorems, including pumping lemmas, closure properties, rational and algebraic generating functions, and Greib...

متن کامل

A Generalized Greibach Normal Form for Definite Clause Grammars

An arbitrary definite clause grammar can be transforaled into a so-called Generalized Greibach Normal Form (GGNF), a generalization of the classical Greibach Normat Form (GNF) for context-free grammars. The normalized definite clause grammar is declaratively equivalent to the original definite clause grammar, that is, it assigns the same analyses to the same strings. Offline-parsability of the ...

متن کامل

Sequential grammars and automata with valences

We discuss the model of valence grammars, a simple extension of context-free grammars. We show closure properties of context-free valence languages over arbitrary monoids. Chomsky and Greibach normal form theorems and an iteration lemma for context-free valence grammars over the groups Z are proved. The generative power of di4erent control monoids is investigated. In particular, we show that co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 409  شماره 

صفحات  -

تاریخ انتشار 2008