Morphology for Color Images via Loewner Order for Matrix Fields
نویسندگان
چکیده
Mathematical morphology is a very successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of a maximum and a minimum with respect to an order. Many operators constructed from dilation and erosion are available for grey value images, and recently useful analogs of these processes for matrix-valued images have been introduced by taking advantage of the so-called Loewner order. There has been a number of approaches to morphology for vector-valued images, that is, colour images based on various orders, however, each with its merits and shortcomings. In this article we propose an approach to (elementary) morphology for colour images that relies on the existing order based morphology for matrix fields of symmetric 2 × 2-matrices. An RGB-image is embedded into a field of those 2 × 2-matrices by exploiting the geometrical properties of the order cone associated with the Loewner order. To this end a modification of the HSL-colour model and a relativistic addition of matrices is introduced. The experiments performed with various morphological elementary operators on synthetic and real images demonstrate the capabilities and restrictions of the novel approach.
منابع مشابه
Order Based Morphology for Color Images via Matrix Fields
Mathematical morphology is a successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of supremum and infimum with respect to an order. From dilation and erosion one can build readily other useful elementary morphological operators and filters, such as opening, closing, morphological top-ha...
متن کاملMathematical Morphology for Tensor Data Induced by the Loewner Ordering in Higher Dimensions
Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological opera...
متن کاملMorphology for Higher-Dimensional Tensor Data Via Loewner Ordering
The operators of greyscale morphology rely on the notions of maximum and minimum which regrettably are not directly available for tensor-valued data since the straightforward component-wise approach fails. This paper aims at the extension of the maximum and minimum operations to the tensor-valued setting by employing the Loewner ordering for symmetric matrices. This prepares the ground for matr...
متن کاملMorphology for matrix data: Ordering versus PDE-based approach
Matrix fields are becoming increasingly important in digital imaging. In order to perform shape analysis, enhancement or segmentation of such matrix fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the setting of matrices, in the literature sometimes referred to as tensors despite the fact that matrices are only rank two te...
متن کاملMicrowave Imaging Using SAR
Polarimetric Synthetic Aperture Radar (Pol.-SAR) allows us to implement the recognition and classification of radar targets. This article investigates the arrangement of scatterers by SAR data and proposes a new Look-up Table of Region (LTR). This look-up table is based on the combination of (entropy H/Anisotropy A) and (Anisotropy A/scattering mechanism α), which has not been reported up now. ...
متن کامل