A sub-constant improvement in approximating the positive semidefinite Grothendieck problem

نویسندگان

  • Roy Frostig
  • Sida I. Wang
چکیده

Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we describe a polynomial-time algorithm for the positive semidefinite Grothendieck problem – based on rounding from the standard relaxation – that achieves a ratio of 2/π + Θ(1/ √ n), whereas the previous best is 2/π + Θ(1/n). We further show a corresponding integrality gap of 2/π + Õ(1/n1/3).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the Little Grothendieck Problem over the Orthogonal Group

The little Grothendieck problem (a special case of Boolean quadratic optimization) consists of maximizing ∑ ij Cijxixj over binary variables xi ∈ {±1}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ Rdn×dn a positive semidefinite matrix, the objective is to maximi...

متن کامل

Approximating the little Grothendieck problem over the orthogonal and unitary groups

The little Grothendieck problem consists of maximizing Σ ij Cijxixj for a positive semidef-inite matrix C, over binary variables xi ∈ {±1}. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ ℝ dn × dn a positive semidefinite matrix, the objective is to maximize [Formula: see text] restricting Oi to take values...

متن کامل

The Positive Semidefinite Grothendieck Problem with Rank Constraint

Given a positive integer n and a positive semidefinite matrix A = (Aij ) ∈ R m×m the positive semidefinite Grothendieck problem with rank-nconstraint is (SDPn) maximize m

متن کامل

Grothendieck inequalities for semidefinite programs with rank constraint

Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: A difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap ...

متن کامل

Approximating Quadratic Programs with Semidefinite Relaxations

Given an arbitrary matrix A in which all of the diagonal elements are zero, we would like to find x1, x2, . . . , xn ∈ {−1, 1} such that ∑n i=1 ∑n j=1 aijxixj is maximized. This problem has an important application in correlation clustering, and is also related to the well-known inequality of Grothendieck in functional analysis. While solving quadratic programs is NP-hard, we can approximate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1408.2270  شماره 

صفحات  -

تاریخ انتشار 2014