Supervised learning via Euler's Elastica models

نویسندگان

  • Tong Lin
  • Hanlin Xue
  • Ling Wang
  • Bo Huang
  • Hongbin Zha
چکیده

This paper investigates the Euler’s elastica (EE) model for high-dimensional supervised learning problems in a function approximation framework. In 1744 Euler introduced the elastica energy for a 2D curve on modeling torsion-free thin elastic rods. Together with its degenerate form of total variation (TV), Euler’s elastica has been successfully applied to low-dimensional data processing such as image denoising and image inpainting in the last two decades. Our motivation is to apply Euler’s elastica to high-dimensional supervised learning problems. To this end, a supervised learning problem is modeled as an energy functional minimization under a new geometric regularization scheme, where the energy is composed of a squared loss and an elastica penalty. The elastica penalty aims at regularizing the approximated function by heavily penalizing large gradients and high curvature values on all level curves. We take a computational PDE approach to minimize the energy functional. By using variational principles, the energy minimization problem is transformed into an Euler-Lagrange PDE. However, this PDE is usually high-dimensional and can not be directly handled by common low-dimensional solvers. To circumvent this difficulty, we use radial basis functions (RBF) to approximate the target function, which reduces the optimization problem to finding the linear coefficients of these basis functions. Some theoretical properties of this new model, including the existence and uniqueness of solutions and universal consistency, are analyzed. Extensive experiments have demonstrated the effectiveness of the proposed model for binary classification, multi-class classification, and regression tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Variation and Euler's Elastica for Supervised Learning

In recent years, total variation (TV) and Euler’s elastica (EE) have been successfully applied to image processing tasks such as denoising and inpainting. This paper investigates how to extend TV and EE to the supervised learning settings on high dimensional data. The supervised learning problem can be formulated as an energy functional minimization under Tikhonov regularization scheme, where t...

متن کامل

A Convex, Lower Semicontinuous Approximation of Euler's Elastica Energy

We propose a convex, lower semi-continuous, coercive approximation of Euler’s elastica energy for images, which is thus very well-suited as a regularizer in image processing. The approximation is not quite the convex relaxation, and we discuss its close relation to the exact convex relaxation as well as the difficulties associated with computing the latter. Interestingly, the convex relaxation ...

متن کامل

Image Segmentation Using Euler's Elastica as the Regularization

The active contour segmentation model of Chan and Vese has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.

متن کامل

From the elastica compass to the elastica catapult: an essay on the mechanics of soft robot arm

An elastic rod is clamped at one end and has a dead load attached to the other (free) end. The rod is then slowly rotated using the clamp. When the load is smaller than the buckling value, the rod describes a continuous set of quasi-static forms and its end traces a (smooth, convex and simple) closed curve, which would be a circle if the rod were rigid. The closed curve is analytically determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015