Stress levels of glucocorticoids inhibit LHβ-subunit gene expression in gonadotrope cells.
نویسندگان
چکیده
Increased glucocorticoid secretion is a common response to stress and has been implicated as a mediator of reproductive suppression upon the pituitary gland. We utilized complementary in vitro and in vivo approaches in the mouse to investigate the role of glucocorticoids as a stress-induced intermediate capable of gonadotrope suppression. Repeated daily restraint stress lengthened the ovulatory cycle of female mice and acutely reduced GnRH-induced LH secretion and synthesis of LH β-subunit (LHβ) mRNA, coincident with increased circulating glucocorticoids. Administration of a stress level of glucocorticoid, in the absence of stress, blunted LH secretion in ovariectomized female mice, demonstrating direct impairment of reproductive function by glucocorticoids. Supporting a pituitary action, glucocorticoid receptor (GR) is expressed in mouse gonadotropes and treatment with glucocorticoids reduces GnRH-induced LHβ expression in immortalized mouse gonadotrope cells. Analyses revealed that glucocorticoid repression localizes to a region of the LHβ proximal promoter, which contains early growth response factor 1 (Egr1) and steroidogenic factor 1 sites critical for GnRH induction. GR is recruited to this promoter region in the presence of GnRH, but not by dexamethasone alone, confirming the necessity of the GnRH response for GR repression. In lieu of GnRH, Egr1 induction is sufficient for glucocorticoid repression of LHβ expression, which occurs via GR acting in a DNA- and dimerization-independent manner. Collectively, these results expose the gonadotrope as an important neuroendocrine site impaired during stress, by revealing a molecular mechanism involving Egr1 as a critical integrator of complex formation on the LHβ promoter during GnRH induction and GR repression.
منابع مشابه
G proteins and autocrine signaling differentially regulate gonadotropin subunit expression in pituitary gonadotrope.
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However...
متن کاملPPARγ co-activator-1α co-activates steroidogenic factor 1 to stimulate the synthesis of luteinizing hormone and aldosterone.
The orphan nuclear receptor SF-1 (steroidogenic factor 1) is highly expressed in the pituitary, gonad and adrenal glands and plays key roles at all levels of the hypothalamic-pituitary-steroidogenic tissue axis. In the present study, we show that PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator 1α] interacts with and co-activates SF-1 to induce LHβ (luteinizing hormone ...
متن کاملA New Role for Wilms Tumor Protein 1: Differential Activities of + KTS and –KTS Variants to Regulate LHβ Transcription
Luteinizing hormone (LH) is synthesized and secreted throughout the reproductive cycle from gonadotrope cells in the anterior pituitary, and is required for steroidogenesis and ovulation. LH contains an α-subunit common with FSH, and a unique LHβ subunit that defines biological activity. Basal LHβ transcription is low and stimulated by hypothalamic GnRH, which induces synthesis of early growth ...
متن کاملGlucocorticoids Induce Human Glycoprotein Hormone -Subunit Gene Expression in the Gonadotrope
The human glycoprotein hormone -subunit ( GSU) gene is transcriptionally regulated by glucocorticoids in a cell typespecific fashion. In direct contrast to repression of GSU by glucocorticoids in placenta, glucocorticoid receptor (GR) modulation in the pituitary is little understood. We show that glucocorticoids stimulate the GSU promoter in immortalized pituitary gonadotrope-derived L T2 cells...
متن کاملAndrogens, progestins, and glucocorticoids induce follicle-stimulating hormone beta-subunit gene expression at the level of the gonadotrope.
FSH is produced by the pituitary gonadotrope to regulate gametogenesis. Steroid hormones, including androgens, progestins, and glucocorticoids, have all been shown to stimulate expression of the FSHbeta subunit in primary pituitary cells and rodent models. Understanding the molecular mechanisms of steroid induction of FSHbeta has been difficult due to the heterogeneity of the anterior pituitary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2012