Hypothalamic AMPK activation blocks lipopolysaccharide inhibition of glucose production in mice liver
نویسندگان
چکیده
Endotoxic hypoglycaemia has an important role in the survival rates of septic patients. Previous studies have demonstrated that hypothalamic AMP-activated protein kinase (hyp-AMPK) activity is sufficient to modulate glucose homeostasis. However, the role of hyp-AMPK in hypoglycaemia associated with endotoxemia is unknown. The aims of this study were to examine hyp-AMPK dephosphorylation in lipopolysaccharide (LPS)-treated mice and to determine whether pharmacological hyp-AMPK activation could reduce the effects of endotoxemia on blood glucose levels. LPS-treated mice showed reduced food intake, diminished basal glycemia, increased serum TNF-α and IL-1β levels and increased hypothalamic p-TAK and TLR4/MyD88 association. These effects were accompanied by hyp-AMPK/ACC dephosphorylation. LPS-treated mice also showed diminished liver expression of PEPCK/G6Pase, reduction in p-FOXO1, p-AMPK, p-STAT3 and p-JNK level and glucose production. Pharmacological hyp-AMPK activation blocked the effects of LPS on the hyp-AMPK phosphorylation, liver PEPCK expression and glucose production. Furthermore, the effects of LPS were TLR4-dependent because hyp-AMPK phosphorylation, liver PEPCK expression and fasting glycemia were not affected in TLR4-mutant mice. These results suggest that hyp-AMPK activity may be an important pharmacological target to control glucose homeostasis during endotoxemia.
منابع مشابه
Hypothalamic Inhibition of Acetyl-CoA Carboxylase Stimulates Hepatic Counter-Regulatory Response Independent of AMPK Activation in Rats
BACKGROUND Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acet...
متن کاملHypothalamic Nutrient Sensing Activates a Forebrain-Hindbrain Neuronal Circuit to Regulate Glucose Production In Vivo
OBJECTIVE Hypothalamic nutrient sensing regulates glucose production, but the neuronal circuits involved remain largely unknown. Recent studies underscore the importance of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex in glucose regulation. These studies raise the possibility that hypothalamic nutrient sensing activates a forebrain-hindbrain NMDA-dependent circuit to regula...
متن کاملRho-Kinase Inhibition Ameliorates Metabolic Disorders through Activation of AMPK Pathway in Mice
BACKGROUND Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet...
متن کاملHypothalamic AMP-Activated Protein Kinase Regulates Glucose Production
OBJECTIVE The fuel sensor AMP-activated protein kinase (AMPK) in the hypothalamus regulates energy homeostasis by sensing nutritional and hormonal signals. However, the role of hypothalamic AMPK in glucose production regulation remains to be elucidated. We hypothesize that bidirectional changes in hypothalamic AMPK activity alter glucose production. RESEARCH DESIGN AND METHODS To introduce bi...
متن کاملActivation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.
Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed gluco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and Cellular Endocrinology
دوره 381 شماره
صفحات -
تاریخ انتشار 2013