Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects
نویسنده
چکیده
Genest et al. (1995) proposed a two-stages semi-parametric estimation procedure for bivariate Archimedean copulas. A three stage semi-parametric estimation method based on Kendall’s tau has been recently proposed in the financial literature to estimate the Student’s T copula, too. Its major advantage is to allow for greater computational tractability when dealing with high dimensional issues, where two-stage procedures are no more a viable choice. We develop the asymptotic properties of this methodology and we examine its finite-sample behavior via simulations. We then analyze the pros and cons of this methodology in terms of numerical convergence and positive definiteness of the estimated T-copula correlation matrix.
منابع مشابه
A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems
Recent large scale simulations indicate that a powerful goodness-of-fit test for copulas can be obtained from the process comparing the empirical copula with a parametric estimate of the copula derived under the null hypothesis. A first way to compute approximate p-values for statistics derived from this process consists of using the parametric bootstrap procedure recently thoroughly revisited ...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملSemiparametric multivariate density estimation for positive data using copulas
In this paper we estimate density functions for positive multivariate data. We propose a semiparametric approach. The estimator combines gamma kernels or local linear kernels, also called boundary kernels, for the estimation of the marginal densities with parametric copulas to model the dependence. This semiparametric approach is robust both to the well-known boundary bias problem and the curse...
متن کاملConstruction of Leading Economic Index for Recession Prediction using Vine Copulas
This paper constructs a composite leading index for business cycle prediction based on vine copulas that capture the complex pattern of dependence among individual predictors. This approach is optimal in the sense that the resulting index possesses the highest discriminatory power as measured by the receiver operating characteristic (ROC) curve. The model specification is semi-parametric in nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010