Mechanical properties of spruce wood cell walls by nanoindentation
نویسندگان
چکیده
In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly with increasing microfibril angle. While the elastic moduli of cell walls with large microfibril angle agreed well with published values, the elastic moduli of cell walls with small microfibril angle were clearly underestimated in nanoindentation measurements. Hardness measurements in the cell corner middle lamella allowed us to estimate the yield stress of the cell-wall matrix to be 0.34±0.16 GPa. Since the hardness of the secondary cell wall was statistically not different from the hardness of the cell corner middle lamella, irrespective of high variability in cellulose microfibril angle, it is proposed that compressive yielding of wood-cell walls is a matrix-dominated process.
منابع مشابه
Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy
Refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) mature wood were investigated by nanoindentation and atomic force microscopy (AFM). The effect of steam pressure, in the range of 2–18 bar, during thermomechanical refining was investigated and the nanomechanical properties and nanoor micro-level damages of the cell wall were evaluated. The results indicate that refining pressu...
متن کاملNanoindentation of wood cell walls: Continuous stiffness and hardness measurements
The objective of this study was to measure the mechanical properties of individual, native wood fibers using the continuous nanoindentation measurement technique. The indentation depth profile exhibited a small length-scale effect, which was confirmed using the size-effect index derived from the indentation loading curve. The hardness (Hu) or stiffness (Eu) values determined from indentation un...
متن کاملThe Furfurylation of Wood: A Nanomechanical Study of Modified Wood Cells
Furfurylation of wood is of interest worldwide as an environmentally friendly modification process. It is widely assumed that low-molecular weight furfuryl alcohol (FA) can penetrate into wood cells and polymerize in-situ during the process, resulting in substantial improvement in the physical-mechanical properties and durability of wood. In this study, confocal laser scanning microscopy (CLSM)...
متن کاملThe Structure and Mechanical Properties of Spines from the Cactus Opuntia Ficus-indica
The mechanical properties and structure of cactus Opuntia ficus-indica spines were characterised in bending and by means of x-ray diffraction. Using spruce wood cell walls for reference, the modulus of elasticity of Opuntia cactus spines was high in absolute terms, but comparable when specific values were considered, which can be explained by similarities in the cell wall structure of both mate...
متن کاملNanoindentation as a Tool for Understanding Nano-mechanical Properties of Wood Cell Wall and Biocomposites
Cellulose fibers, cell wall fragments and cellulose microfibrils can be used as reinforced materials for biocomposite manufacture. Understanding nano-mechanical properties of those materials will be very useful to show their full theoretical potential. Nanoindentation testing is a technique that determines the mechanical properties of a material in the sub-micron/nano scale. The test involves p...
متن کامل