Learning to Rank for Personalized News Article Retrieval
نویسندگان
چکیده
This paper aims to tackle the very interesting and important problem of user personalized ranking of search results. The focus is on news retrieval and the data from which the ranking model is learned was provided by a large online newspaper. The personalized news search ranking model which we have developed takes into account not only document content and metadata, but also data specific to the user such as age, gender, job, income, city, country etc. All the user specific data is provided by the user himself when registering to the news site.
منابع مشابه
Active Sampling for Rank Learning via Optimizing the Area under the ROC Curve
Learning ranking functions is crucial for solving many problems, ranging from document retrieval to building recommendation systems based on an individual user’s preferences or on collaborative filtering. Learning-to-rank is particularly necessary for adaptive or personalizable tasks, including email prioritization, individualized recommendation systems, personalized news clipping services and ...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملAutomated arabic text classification with P-Stemmer, machine learning, and a tailored news article taxonomy
Arabic news articles in electronic collections are difficult to work with. Browsing by category is rarely supported. While helpful machine learning methods have been applied successfully to similar situations for English news articles, limited research has been completed to yield suitable solutions for Arabic news. In connection with a QNRF funded project to build digital library community and ...
متن کاملLearning-to-Rank for Hybrid User Profiles
In the context of the Personalized Information Retrieval method applied to the Arabic language, this work consists in presenting a personalized ranking method based on a model of supervised learning and its implementation. This method consists of four steps, namely, the user's modeling, the document / query / profile matching, the learning to rank and the result classification. Thus, we propose...
متن کاملLinear Submodular Bandits and their Application to Diversified Retrieval
Diversified retrieval and online learning are two core research areas in the design of modern information retrieval systems. In this paper, we propose the linear submodular bandits problem, which is an online learning setting for optimizing a general class of feature-rich submodular utility models for diversified retrieval. We present an algorithm, called LSBGREEDY, and prove that it efficientl...
متن کامل