On periodic Takahashi manifolds

نویسنده

  • Michele Mulazzani
چکیده

In this paper we show that periodic Takahashi 3-manifolds are cyclic coverings of the connected sum of two lens spaces (possibly cyclic coverings of S), branched over knots. When the base space is a 3-sphere, we prove that the associated branching set is a two-bridge knot of genus one, and we determine its type. Moreover, a geometric cyclic presentation for the fundamental groups of these manifolds is obtained in several interesting cases, including the ones corresponding to the branched cyclic coverings of S. Mathematics Subject Classification 2000: Primary 57M12, 57R65; Secondary 20F05, 57M05, 57M25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 02 39 3 v 1 [ m at h . G T ] 2 4 Fe b 20 04 CYCLIC BRANCHED COVERINGS OF ( g , 1 ) - KNOTS

We study (g, 1)-knots and their strongly-cyclic branched coverings, proving the necessary and sufficient conditions for their existence and uniqueness, and characterizing their fundamental groups. As a relevant example, we prove that generalized periodic Takahashi manifolds belong to this family of manifolds.

متن کامل

Dirac operators on manifolds with periodic ends

This paper studies Dirac operators on end-periodic spin manifolds of dimension at least 4. We provide a necessary and sufficient condition for such an operator to be Fredholm for a generic end-periodic metric. We make use of end-periodic Dirac operators to give an analytical interpretation of an invariant of non-orientable smooth 4-manifolds due to Cappell and Shaneson. From this interpretation...

متن کامل

Holomorphic almost periodic functions on coverings of complex manifolds

In this paper we discuss some results of the theory of holomorphic almost periodic functions on coverings of complex manifolds, recently developed by the authors. The methods of the proofs are mostly sheaf-theoretic which allows us to obtain new results even in the classical setting of H. Bohr’s holomorphic almost periodic functions on tube

متن کامل

Complex Geometry and Several Complex Variables at The University of Notre Dame March 9-11, 2018 University of Notre Dame, USA BOOK OF ASTRACTS

I will discuss a new parabolic Monge-Ampère equation with applications to the existence (and non-existence) of Kähler-Einstein metrics. I will discuss the long-time existence of the flow, and convergence on Kähler-Einstein manifolds. Time permitting, I will also discuss the convergence of the flow to the maximally destabilizing degeneration on toric Fano manifolds. This is joint work with T. Hi...

متن کامل

The Seiberg-witten Equations on End-periodic Manifolds and Positive Scalar Curvature Metrics

By studying the Seiberg-Witten equations on end-periodic manifolds, we give an obstruction on the existence of positive scalar curvature metric on compact 4-manifolds with the same homology as S ˆ S. This obstruction is given in terms of the relation between the Frøyshov invariant of the generator of H3pX;Zq with the 4-dimensional Casson invariant λSW pXq defined in [6]. Along the way, we devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008