Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization

نویسنده

  • P. APKARIAN
چکیده

We present a non-smooth optimization technique for non-convex maximum eigenvalue functions and for non-smooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization

We present a nonsmooth optimization technique for nonconvex maximum eigenvalue functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.

متن کامل

A Proximity Control Algorithm to Minimize Nonsmooth and Nonconvex Semi-infinite Maximum Eigenvalue Functions

Proximity control is a well-known mechanism in bundle method for nonsmooth optimization. Here we show that it can be used to optimize a large class of nonconvex and nonsmooth functions with additional structure. This includes for instance nonconvex maximum eigenvalue functions, and also infinite suprema of such functions.

متن کامل

Spectral bundle methods for non-convex maximum eigenvalue functions: second-order methods

We study constrained and unconstrained optimization programs for nonconvex maximum eigenvalue functions. We show how second order techniques may be introduced as soon as it is possible to reliably guess the multiplicity of the maximum eigenvalue at a limit point. We examine in which way standard and projected Newton steps may be combined with a nonsmooth first-order method to obtain a globally ...

متن کامل

Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods

Many challenging problems in automatic control may be cast as optimization programs subject to matrix inequality constraints. Here we investigate an approach which converts such problems into non-convex eigenvalue optimization programs and makes them amenable to non-smooth analysis techniques like bundle or cutting plane methods. We prove global convergence of a first-order bundle method for pr...

متن کامل

A Modified Regularized Newton Method for Unconstrained Nonconvex Optimization

In this paper, we present a modified regularized Newton method for the unconstrained nonconvex optimization by using trust region technique. We show that if the gradient and Hessian of the objective function are Lipschitz continuous, then the modified regularized Newton method (M-RNM) has a global convergence property. Numerical results show that the algorithm is very efficient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006