Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization
نویسنده
چکیده
We present a non-smooth optimization technique for non-convex maximum eigenvalue functions and for non-smooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.
منابع مشابه
A Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization
We present a nonsmooth optimization technique for nonconvex maximum eigenvalue functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.
متن کاملA Proximity Control Algorithm to Minimize Nonsmooth and Nonconvex Semi-infinite Maximum Eigenvalue Functions
Proximity control is a well-known mechanism in bundle method for nonsmooth optimization. Here we show that it can be used to optimize a large class of nonconvex and nonsmooth functions with additional structure. This includes for instance nonconvex maximum eigenvalue functions, and also infinite suprema of such functions.
متن کاملSpectral bundle methods for non-convex maximum eigenvalue functions: second-order methods
We study constrained and unconstrained optimization programs for nonconvex maximum eigenvalue functions. We show how second order techniques may be introduced as soon as it is possible to reliably guess the multiplicity of the maximum eigenvalue at a limit point. We examine in which way standard and projected Newton steps may be combined with a nonsmooth first-order method to obtain a globally ...
متن کاملSpectral bundle methods for non-convex maximum eigenvalue functions: first-order methods
Many challenging problems in automatic control may be cast as optimization programs subject to matrix inequality constraints. Here we investigate an approach which converts such problems into non-convex eigenvalue optimization programs and makes them amenable to non-smooth analysis techniques like bundle or cutting plane methods. We prove global convergence of a first-order bundle method for pr...
متن کاملA Modified Regularized Newton Method for Unconstrained Nonconvex Optimization
In this paper, we present a modified regularized Newton method for the unconstrained nonconvex optimization by using trust region technique. We show that if the gradient and Hessian of the objective function are Lipschitz continuous, then the modified regularized Newton method (M-RNM) has a global convergence property. Numerical results show that the algorithm is very efficient.
متن کامل