Multivariate Extremes, Aggregation and Dependence in Elliptical Distributions
نویسندگان
چکیده
In this paper we clarify dependence properties of elliptical distributions by deriving general but explicit formulas for the coefficients of upper and lower tail dependence and spectral measures with respect to different norms. We show that an elliptically distributed random vector is regularly varying if and only if the bivariate marginal distributions have tail dependence. Furthermore, the tail dependence coefficients are fully determined by the tail index of the random vector (or equivalently of its components) and the linear correlation coefficient. Whereas Kendall’s tau is invariant in the class of elliptical distributions with continuous marginals and a fixed dispersion matrix, we show that this is not true for Spearman’s rho. We also show that sums of elliptically distributed random vectors with the same dispersion matrix (up to a positive constant factor) remain elliptical if they are dependent only through their radial parts.
منابع مشابه
Multivariate Extremes, Aggregation and Dependence in Elliptical Distributions∗ Henrik Hult and Filip Lindskog
In this paper we clarify dependence properties of elliptical distributions by deriving general but explicit formulas for the coefficients of upper and lower tail dependence and spectral measures with respect to different norms. We show that an elliptically distributed random vector is regularly varying if and only if the bivariate marginal distributions have tail dependence. Furthermore, the ta...
متن کاملOn the residual dependence index of elliptical distributions
The residual dependence index of bivariate Gaussian distributions is determined by the correlation coefficient. This tail index is of certain statistical importance when extremes and related rare events of bivariate samples with asymptotic independent components are being modeled. In this paper we calculate the partial residual dependence indices of a multivariate elliptical random vector assum...
متن کاملLinear Correlation Estimation
Most financial models for modelling dependent risks are based on the assumption of multivariate normality and linear correlation is used as a measure of dependence. However, observed financial data are rarely normally distributed and tend to have marginal distributions with heavier tails. Furthermore, the observed synchronized extreme falls in financial markets can not be modelled by multivaria...
متن کاملTail Dependence for Heavy-Tailed Scale Mixtures of Multivariate Distributions
The tail dependence of multivariate distributions is frequently studied via the tool of copulas. This paper develops a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulas for tail dependence parameters are derived, and a suff...
متن کاملA Survey of Spatial Extremes: Measuring Spatial Dependence and Modeling Spatial Effects
Abstract: • We survey the current practice of analyzing spatial extreme data, which lies at the intersection of extreme value theory and geostatistics. Characterizations of multivariate max-stable distributions typically assume specific univariate marginal distributions, and their statistical applications generally require capturing the tail behavior of the margins and describing the tail depen...
متن کامل