Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F
نویسندگان
چکیده
An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm) and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.
منابع مشابه
Role of Tartaric Acid in Chemical, Mechanical and Self-Healing Behaviors of a Calcium-Aluminate Cement Blend with Fly Ash F under Steam and Alkali Carbonate Environments at 270 °C
Tartaric acid (TA) changes short-term mechanical behavior and phase composition of sodium-metasilicate activated calcium-aluminate cement blend with fly ash, type F, when used as a set control additive to allow sufficient pumping time for underground well placement. The present work focuses on TA effect on self-healing properties of the blend under steam or alkali carbonate environments at 270 ...
متن کاملThe Hydration Products of a Refractory Calcium Aluminate Cement at Intermediate Temperatures
The major hydraulic phase in all the calcium aluminate cements including ciment fondue is CA (CaAl2O4). Once hydrated, it starts to form the hexagonal crystals of CAH10 and C2AH8 that depending on the time and temperature of hydration convert to the cubic crystals of C3AH6 and AH3. The nature, sequence, ...
متن کاملThe Hydration Products of a Refractory Calcium Aluminate Cement at Low Temperatures
Calcium aluminates (CA) are the most important hydraulically setting cements used for preparing refractory castables, because they develop high strength at very early ages after placements. The anhydrous phases of this kind of cements are CA, CA2 and traces of C12A7 and alpha-alumina. The major hydraulic phase in all of the CA cements including ciment fondu...
متن کاملEffect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.
The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 deg...
متن کاملOne-part geopolymer mixes from geothermal silica and sodium aluminate
At present, the most commonly used building material is ordinary Portland cement (OPC). However, OPC has a negative environmental effect during synthesis, with the release of significant amount of CO2 greenhouse gas. The cement industry is responsible for 5-8% of total global anthropogenic CO2 emissions. Geopolymerization is a technology capable of turning industrial wastes into strong and chem...
متن کامل