Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration

نویسندگان

  • Farah Deeba
  • Ashutosh K. Pandey
  • Vivek Pandey
چکیده

To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteome Analysis of Detached Fronds from a Resurrection Plant Selaginella Bryopteris - Response to Dehydration and Rehydration

Selaginella bryopteris (L.) Bak is a resurrection plant. Uniquely, its detached fronds have the ability to survive desiccation similar to that of the whole plant. In order to understand the mechanisms of desiccation tolerance, proteome studies were carried out in this plant using detached fronds to reveal proteins that were differentially expressed in response to dehydration and rehydration. Th...

متن کامل

Selaginella bryopteris Aqueous Extract Improves Stability and Function of Cryopreserved Human Mesenchymal Stem Cells

The effective long-term cryopreservation of human mesenchymal stem cells (MSCs) is an essential prerequisite step and represents a critical approach for their sustained supply in basic research, regenerative medicine, and tissue engineering applications. Therefore, attempts have been made in the present investigation to formulate a freezing solution consisting of a combination of Selaginella br...

متن کامل

An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration

Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene l...

متن کامل

Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance.

Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on...

متن کامل

Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla

The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016