Coupling between feline cerebellum (fastigial neurons) and motoneurons innervating hindlimb muscles.
نویسندگان
چکیده
The aims of the study were twofold: (1) to verify the hypothesis that neurons in the fastigial nucleus excite and inhibit hindlimb alpha-motoneurons and (2) to determine both the supraspinal and spinal relays of these actions. Axons of fastigial neurons were stimulated at the level of their decussation in the cerebellum, within the hook bundle of Russell, in deeply anesthetized cats with only the right side of the spinal cord intact. The resulting excitatory postsynaptic potentials and inhibitory postsynaptic potentials were analyzed in motoneurons on the left side of the lumbar enlargement. Postsynaptic potentials evoked by the first effective stimulus were induced at latencies <2 ms from descending volleys and <1 ms from interneuronally relayed volleys, indicating a trisynaptic coupling between the fastigial neurons and alpha-motoneurons, via commissural interneurons on the right side. Cerebellar stimulation facilitated the synaptic actions of both vestibulospinal and reticulospinal tract fibers. However, the study leads to the conclusion that trisynaptic fastigial actions are mediated via vestibulospinal rather than reticulospinal tract fibers [stimulated within the lateral vestibular nucleus (LVN) and the medial longitudinal fascicle (MLF), respectively]. This is indicated firstly by collision between descending volleys induced by cerebellar stimulation and volleys evoked by LVN stimuli but not by MLF stimuli. Second, similar cerebellar actions were evoked before and after a transection of MLF. Mutual facilitation between the fastigial and reticulospinal, as well as between the fastigial and vestibulospinal actions, could be due to the previously reported integration of descending vestibulospinal and reticulospinal commands by spinal commissural interneurons.
منابع مشابه
Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons.
Pathways through which reticulospinal neurons can influence contralateral limb movements were investigated by recording from motoneurons innervating hindlimb muscles. Reticulospinal tract fibers were stimulated within the brainstem or in the lateral funiculus of the thoracic spinal cord contralateral to the motoneurons. Effects evoked by ipsilaterally descending reticulospinal tract fibers were...
متن کاملA survey of spinal collateral actions of feline ventral spinocerebellar tract neurons.
The aim of this study was to identify spinal target cells of spinocerebellar neurons, in particular the ventral spinocerebellar tract (VSCT) neurons, giving off axon collaterals terminating within the lumbosacral enlargement. Axons of spinocerebellar neurons were stimulated within the cerebellum while searching for most direct synaptic actions on intracellularly recorded hindlimb motoneurons an...
متن کاملPrinciples of motor organization of the monkey cervical spinal cord.
The organization of spinal cord motor columns innervating 18 selected macaque forelimb muscles was studied with the technique of retrograde transport of horseradish peroxidase. The reliability of the method was evaluated in the cat hindlimb. Motor columns innervating forearm muscles with similar actions on the hand appear to overlap in the anterior horn. Extensor motoneurons are generally posit...
متن کاملSelective reinnervation of transplanted muscles by their original motoneurons in the axolotl.
The motoneurons innervating 3 hindlimb extensor muscles, anterior and posterior iliotibialis and iliofibularis, were studied separately by retrograde labeling with HRP. The motor pools for these 3 muscles overlapped to such an extent that individual motoneurons between ventral roots 16 and 17 could not be assigned unambiguously to one pool or another. Thus, conventional retrograde labeling coul...
متن کاملFlexibility in the patterning and control of axial locomotor networks in lamprey.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2004