Multiple Measurements and Joint Dimensionality Reduction for Large Scale Image Search with Short Vectors - Extended Version
نویسندگان
چکیده
This paper addresses the construction of a short-vector (128D) image representation for large-scale image and particular object retrieval. In particular, the method of joint dimensionality reduction of multiple vocabularies is considered. We study a variety of vocabulary generation techniques: different k-means initializations, different descriptor transformations, different measurement regions for descriptor extraction. Our extensive evaluation shows that different combinations of vocabularies, each partitioning the descriptor space in a different yet complementary manner, results in a significant performance improvement, which exceeds the state-of-the-art.
منابع مشابه
A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملNegative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening
The paper addresses large scale image retrieval with short vector representations. We study dimensionality reduction by Principal Component Analysis (PCA) and propose improvements to its different phases. We show and explicitly exploit relations between i) mean subtraction and the negative evidence, i.e., a visual word that is mutually missing in two descriptions being compared, and ii) the axi...
متن کاملFractal Image Compression via Nearest Neighbor Search
In fractal image compression the encoding step is computationally expensive. A large number of sequential searches through a list of domains (portions of the image) are carried out while trying to find best matches for other image portions called ranges. Our theory developed here shows that this basic procedure of fractal image compression is equivalent to multi-dimensional nearest neighbor sea...
متن کاملمرور مؤثر نتایج جستجوی تصاویر با تلخیص بصری و متنوع از طریق خوشهبندی
With unprecedented growth in production of digital images and use of multimedia references, requirement of image and subject search has been increased. Systematic processing of this information is a basic prerequisite for effective analysis, organization and management of it. Likewise, large collections of images have been made available on the Web and many search engines have provided the poss...
متن کاملRandom projections for large-scale speaker search
This paper describes a system for indexing acoustic feature vectors for large-scale speaker search using random projections. Given one or more target feature vectors, large-scale speaker search enables returning similar vectors (in a nearest-neighbors fashion) in sublinear time. The speaker feature space is comprised of i-vectors, derived from Gaussian Mixture Model supervectors. The index and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.03285 شماره
صفحات -
تاریخ انتشار 2015