The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cell-mediated NK cell responses.

نویسندگان

  • Marion Russier
  • Stéphanie Reynard
  • Xavier Carnec
  • Sylvain Baize
چکیده

UNLABELLED Lassa virus is an Old World Arenavirus which causes Lassa hemorrhagic fever in humans, mostly in West Africa. Lassa fever is an important public health problem, and a safe and effective vaccine is urgently needed. The infection causes immunosuppression, probably due to the absence of activation of antigen-presenting cells (dendritic cells and macrophages), low type I interferon (IFN) production, and deficient NK cell function. However, a recombinant Lassa virus carrying D389A and G392A substitutions in the nucleoprotein that abolish the exonuclease activity and IFN activation loses its inhibitory activity and induces strong type I IFN production by dendritic cells and macrophages. We show here that during infection by this mutant Lassa virus, antigen-presenting cells trigger efficient human NK cell responses in vitro, including production of IFN-γ and cytotoxicity. NK cell activation involves close contact with both antigen-presenting cells and soluble factors. We report that infected dendritic cells and macrophages express the NKG2D ligands major histocompatibility complex (MHC) class I-related chains A and B and that they may produce interleukin-12 (IL-12), IL-15, and IL-18, all involved in NK cell functions. NK cell degranulation is significantly increased in cocultures, suggesting that NK cells seem to kill infected dendritic cells and macrophages. This work confirms the inhibitory function of Lassa virus nucleoprotein. Importantly, we demonstrate for the first time that Lassa virus nucleoprotein is involved in the inhibition of antigen-presenting cell-mediated NK cell responses. IMPORTANCE The pathogenesis and immune responses induced by Lassa virus are poorly known. Recently, an exonuclease domain contained in the viral nucleoprotein has been shown to be able to inhibit the type I IFN response by avoiding the recognition of viral RNA by cell sensors. Here, we studied the responses of NK cells to dendritic cells and macrophages infected with a recombinant Lassa virus in which the exonuclease functions have been abolished and demonstrated that NK cells are strongly activated and presented effective functions. These results show that the strategy developed by Lassa virus to evade innate immunity is also effective on NK cells, explaining the weak NK cell activation observed with the wild-type virus. By providing a better understanding of the interactions between Lassa virus and the host immune system, these results are important for the field of arenavirus biology and may be useful for a vaccine approach against Lassa fever.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The exonuclease activity of Lassa virus nucleoprotein is involved in 2 APC - mediated NK cell responses

23 24 Lassa virus is an Old World Arenavirus which causes for Lassa hemorrhagic fever in humans 25 mostly in West Africa. Lassa fever is an important public health problem and a safe and effective 26 vaccine is urgently needed. The infection causes immunosuppression, probably due to the 27 absence of activation of antigen-presenting cells (dendritic cells and macrophages), and in low 28 type I ...

متن کامل

Cloning and expression of fragment of the rabies virus nucleoprotein gene in Escherichia coli and evaluation of antigenicity of the expression product

Rabies virus nucleoprotein (N protein) encapsidates genomic RNA of the virus and forms the viral ribonucleoprotein complex. These N proteins represent highly organized structures which activate proliferation of B cells and production antibodies against the N protein. In addition to the B cell, the rabies virus N protein has been shown to induce potent T helper cell responses resulting in a long...

متن کامل

Exonuclease domain of the Lassa virus nucleoprotein is critical to avoid RIG-I signaling and to inhibit the innate immune response.

Lassa virus (LASV), which causes a viral hemorrhagic fever, inhibits the innate immune response. The exonuclease (ExoN) domain of its nucleoprotein (NP) is implicated in the suppression of retinoic acid-inducible gene I (RIG-I) signaling. We show here that a LASV in which ExoN function has been abolished strongly activates innate immunity and that this effect is dependent on RIG-I signaling. Th...

متن کامل

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

Structural Basis for the dsRNA Specificity of the Lassa Virus NP Exonuclease

Lassa virus causes hemorrhagic fever characterized by immunosuppression. The nucleoprotein of Lassa virus, termed NP, binds the viral genome. It also has an additional enzymatic activity as an exonuclease that specifically digests double-stranded RNA (dsRNA). dsRNA is a strong signal to the innate immune system of viral infection. Digestion of dsRNA by the NP exonuclease activity appears to cau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 88 23  شماره 

صفحات  -

تاریخ انتشار 2014