Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays
نویسندگان
چکیده
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملParameter identification based on finite-time synchronization for Cohen–Grossberg neural networks with time-varying delays∗
Abstract. In this paper, the finite-time synchronization problem for chaotic Cohen–Grossberg neural networks with unknown parameters and time-varying delays is investigated by using finitetime stability theory. Firstly, based on the parameter identification of uncertain delayed neural networks, a simple and effective feedback control scheme is proposed to tackle the unknown parameters of the ad...
متن کاملAnalysis of stability for impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays is considered. Based on M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and global exponential stability in mean square means of the equilibrium point for the addressed impulsive st...
متن کاملFinite-time synchronization of delayed neural networks with Cohen-Grossberg type based on delayed feedback control
This paper is concerned with finite-time synchronization for a class of delayed neural networks with Cohen–Grossberg type. Different from the existing related results, the time-delayed feedback strategy is utilized to investigate finite-time synchronization of delayed Cohen–Grossberg neural networks. By constructing Lyapunov functions and using differential inequalities, several new and effecti...
متن کاملSynchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation
In this paper, we investigate a class of fuzzy CohenGrossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiabi...
متن کامل