Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila.
نویسندگان
چکیده
Age-dependent neurodegeneration is a pathological condition found in many metazoans. Despite the biological and medical significance of this condition, the cellular and molecular mechanisms underlying neurodegeneration are poorly understood. The availability of a large collection of mutants exhibiting neurodegeneration will provide a valuable resource to elucidate these mechanisms. We have developed an effective screen for isolating neurodegeneration mutants in Drosophila. This screen is based on the observation that neuronal dysfunction, which leads to observable behavioral phenotypes, is often associated with neurodegeneration. Thus, we used a secondary histological screen to examine a collection of mutants originally isolated on the basis of conditional paralytic phenotypes. Using this strategy, we have identified 15 mutations affecting at least nine loci that cause gross neurodegenerative pathology. Here, we present a genetic, behavioral, and anatomical analysis of vacuous (vacu), the first of these mutants to be characterized, and an overview of other mutants isolated in the screen. vacu is a recessive mutation located cytologically at 85D-E that causes locomotor defects in both larvae and adults as well as neuronal hyperactivity. In addition, vacu exhibits extensive age-dependent neurodegeneration throughout the central nervous system. We also identified mutations in at least eight other loci that showed significant levels of neurodegeneration with a diverse array of neuropathological phenotypes. These results demonstrate the effectiveness of our screen in identifying mutations causing neurodegeneration. Further studies of vacu and the other neurodegenerative mutants isolated should ultimately help dissect the biochemical pathways leading to neurodegeneration.
منابع مشابه
A neuroprotective function of NSF1 sustains autophagy and lysosomal trafficking in Drosophila.
A common feature of many neurodegenerative diseases is the accumulation of toxic proteins that disrupt vital cellular functions. Degradative pathways such as autophagy play an important protective role in breaking down misfolded and long-lived proteins. Neurons are particularly vulnerable to defects in these pathways, but many of the details regarding the link between autophagy and neurodegener...
متن کاملwasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death.
To identify genes required for maintaining neuronal viability, we screened our collection of Drosophila temperature-sensitive paralytic mutants for those exhibiting shortened lifespan and neurodegeneration. Here, we describe the characterization of wasted away (wstd), a recessive, hypomorphic mutation that causes progressive motor impairment, vacuolar neuropathology, and severely reduced lifesp...
متن کاملNeurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster.
A new temperature-sensitive paralytic mutant of Drosophila, comatose, is compared behaviorally and physiologically with the previously known types, para and shi. All three have different properties with respect to kinetics of paralysis at high temperature and recovery from paralysis; com is hypersensitive to paralysis by cooling. Neurophysiological experimeents indicate different mechanisms for...
متن کاملPhenotypic interaction between temperature-sensitive paralytic mutants comatose and paralytic suggests a role for N-ethylmaleimide-sensitive fusion factor in synaptic vesicle cycling in Drosophila.
The temperature-induced paralysis of comatose (comt) mutants of Drosophila is suggestive of a function for N-ethylmaleimide-sensitive fusion factor (NSF) in the CNS. Mutations in the para gene encoding the subunit of the voltage-gated sodium channel also result in a similar phenotype. We show that paralysis in comt flies is activity-dependent, and in the doubly mutant comt para flies comt-like ...
متن کاملProbable mechanisms underlying interallelic complementation and temperature-sensitivity of mutations at the shibire locus of Drosophila melanogaster.
The shibire locus of Drosophila melanogaster encodes dynamin, a GTPase required for the fission of endocytic vesicles from plasma membrane. Biochemical studies indicate that mammalian dynamin is part of a complex containing multiple dynamin subunits and other polypeptides. To gain insight into sequences of dynamin critical for its function, we have characterized in detail a collection of condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 161 3 شماره
صفحات -
تاریخ انتشار 2002