A Hybrid Firefly Algorithm with Fuzzy-c Mean Algorithm for Mri Brain Segmentation
نویسنده
چکیده
Image processing is one of the essential tasks to extract suspicious region and robust features from the Magnetic Resonance Imaging (MRI). A numbers of the segmentation algorithms were developed in order to satisfy and increasing the accuracy of brain tumor detection. In the medical image processing brain image segmentation is considered as a complex and challenging part. Fuzzy c-means is unsupervised method that has been implemented for clustering of the MRI and different purposes such as recognition of the pattern of interest and image segmentation. However; fuzzy c-means algorithm still suffers many drawbacks, such as low convergence rate, getting stuck in the local minima and vulnerable to initialization sensitivity. Firefly algorithm is a new population-based optimization method that has been used successfully for solving many complex problems. This paper proposed a new dynamic and intelligent clustering method for brain tumor segmentation using the hybridization of Firefly Algorithm (FA) with Fuzzy C-Means algorithm (FCM). In order to automatically segment MRI brain images and improve the capability of the FCM to automatically elicit the proper number and location of cluster centres and the number of pixels in each cluster in the abnormal (multiple sclerosis lesions) MRI images. The experimental results proved the effectiveness of the proposed FAFCM in enhancing the performance of the traditional FCM clustering. Moreover; the superiority of the FAFCM with other state-of-the-art segmentation methods is shown qualitatively and quantitatively. Conclusion: A novel efficient and reliable clustering algorithm presented in this work, which is called FAFCM based on the hybridization of the firefly algorithm with fuzzy c-mean clustering algorithm. Automatically; the hybridized algorithm has the capability to cluster and segment MRI brain images.
منابع مشابه
REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY
Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملAn Artificial Fish Swarm Optimized Fuzzy Mri Image Segmentation Approach for Improving Identification of Brain Tumour
In image processing, it is difficult to detect the abnormalities in brain especially in MRI brain images. Also the tumor segmentation from MRI image data is an important; however it is time consuming while carried out by medical specialists. A lot of methods have been proposed to solve MR images problems, quite difficult to develop an automated recognition system which could process on a large ...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل