Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons.
نویسندگان
چکیده
Two-dimensional atomic sheets such as graphene and boron nitride monolayers represent a new class of nanostructured materials for a variety of applications. However, the intrinsic electronic structure of graphene and h-BN atomic sheets limits their direct application in electronic devices. By first-principles density functional theory calculations we demonstrate that band gap of zigzag BN nanoribbons can be significantly tuned under uniaxial tensile strain. The unexpected sensitivity of band gap results from reduced orbital hybridization upon elastic strain. Furthermore, sizable dipole moment and piezoelectric effect are found in these ribbons owing to structural asymmetry and hydrogen passivation. This will offer new opportunities to optimize two-dimensional nanoribbons for applications such as electronic, piezoelectric, photovoltaic, and opto-electronic devices.
منابع مشابه
Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملThe Effect of Modified Couple Stress Theory on Buckling and Vibration Analysis of Functionally Graded Double-Layer Boron Nitride Piezoelectric Plate Based on CPT
In this article, the effect of size-dependent on the buckling and vibration analysis of functionally graded (FG) double-layer boron nitride plate based on classical plate theory (CPT) under electro-thermo-mechanical loadings which is surrounded by elastic foundation is examined. This subject is developed using modified couple stress theory. Using Hamilton's principle, the governing equations of...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملElectronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects.
Gradient-corrected density functional theory (DFT) computations were performed to investigate the geometry, electronic property, formation energy, and reactivity of Stone-Wales (SW) defects in zigzag-edge and armchair-edge boron nitride nanoribbons (BNNRs). The formation energies of SW defects increase with an increase in the widths of BNNRs and are orientation-dependent. SW defects considerabl...
متن کاملA periodic folded piezoelectric beam for efficient vibration energy harvesting
Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2012