Slope Estimation during Normal Walking Using a Shank-Mounted Inertial Sensor
نویسندگان
چکیده
In this paper we propose an approach for the estimation of the slope of the walking surface during normal walking using a body-worn sensor composed of a biaxial accelerometer and a uniaxial gyroscope attached to the shank. It builds upon a state of the art technique that was successfully used to estimate the walking velocity from walking stride data, but did not work when used to estimate the slope of the walking surface. As claimed by the authors, the reason was that it did not take into account the actual inclination of the shank of the stance leg at the beginning of the stride (mid stance). In this paper, inspired by the biomechanical characteristics of human walking, we propose to solve this issue by using the accelerometer as a tilt sensor, assuming that at mid stance it is only measuring the gravity acceleration. Results from a set of experiments involving several users walking at different inclinations on a treadmill confirm the feasibility of our approach. A statistical analysis of slope estimations shows in first instance that the technique is capable of distinguishing the different slopes of the walking surface for every subject. It reports a global RMS error (per-unit difference between actual and estimated inclination of the walking surface for each stride identified in the experiments) of 0.05 and this can be reduced to 0.03 with subject-specific calibration and post processing procedures by means of averaging techniques.
منابع مشابه
Walking speed estimation using a shank-mounted inertial measurement unit.
We studied the feasibility of estimating walking speed using a shank-mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct integration of the accelerometer and gyroscope signals. To te...
متن کاملReliability of the step phase detection using inertial measurement units: pilot study.
The use of inertial sensors for the gait event detection during a long-distance walking, for example, on different surfaces and with different walking patterns, is important to evaluate the human locomotion. Previous studies demonstrated that gyroscopes on the shank or foot are more reliable than accelerometers and magnetometers for the event detection in case of normal walking. However, these ...
متن کاملIdentifying classifier input signals to predict a cross-slope during transtibial amputee walking
Advanced prosthetic foot designs often incorporate mechanisms that adapt to terrain changes in real-time to improve mobility. Early identification of terrain (e.g., cross-slopes) is critical to appropriate adaptation. This study suggests that a simple classifier based on linear discriminant analysis can accurately predict a cross-slope encountered (0°, -15°, 15°) using measurements from the res...
متن کاملStanding Handball Throwing Velocity Estimation with a Single Wrist-Mounted Inertial Sensor
Background. It is well known that overarm throwing is one of the most performed activities in the handball. Shoulder and glenohumeral injuries incidence are high in handball because of both pass, and shooting activity was executed repeatedly in high angular speed. Objectives. This study set out to investigate the usefulness of inexpensive commercial inertial movement sensors for prediction of ...
متن کاملAmbulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements
A novel approach for estimating the instantaneous velocity of the pelvis during walking was developed based on Inertial Measurement Units (IMUs). The instantaneous velocity was modeled by the sum of a cyclical component, decomposed in the Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP) directions, and the Average Progression Velocity (APV) over each gait cycle. The proposed method r...
متن کامل