The Bäcklund Transformations and Abundant Exact Explicit Solutions for a General Nonintegrable Nonlinear Convection-Diffusion Equation

نویسندگان

  • Yong Huang
  • Yadong Shang
  • Shaher M. Momani
چکیده

and Applied Analysis 3 From 2.1 , we have ut f ′′ ( φ ) φxφt f ′ ( φ ) φxt u1t, 2.2 ux f ′′ ( φ ) φ2 x f ′φ ) φxx u1x, 2.3 uxx f ′′′ ( φ ) φ3 x 3f ′′φ ) φxφxx f ′ ( φ ) φxxx u1xx, 2.4 u2 ( f ′ )2( φ ) φ2 x 2f ′φxu1 x, t u1 x, t , u3 ( f ′ )3( φ ) φ3 x 3 ( f ′ )2 φ2 xu1 x, t 3f φxu1 x, t u 3 1 x, t . 2.5 Substituting 2.1 – 2.5 into the left side of 1.1 and collecting all terms with φ3 x, we obtain ut − uxx αuux βu γu2 δu3 ( αf ′′f ′ − f ′′′ δf ′)3 ) φ3 x [ f ′′φxφt − 3f ′′φxφxx αf ′′φ2 xu1 α ( f ′ )2 φxφxx γ ( f ′ )2 φ2 x 3δ ( f ′ )2 φ2 xu1 x, t ] f ′ [ φxt − φxxx αφxxu1 αφxu1x βφx 2γφxu1 3δφxu1 ] [ u1t − u1xx αu1u1x βu1 γu1 δu1 ] 0. 2.6 Setting the coefficient of φ3 x in 2.6 to be zero, we obtain an ordinary differential equation for f αf ′′f ′ − f ′′′ δf ′)3 0, 2.7 which has a solution f ( φ ) λ ln ( φ ) , 2.8 where λ α ± √ α2 8δ /2δ. And then ( f ′ )2 −λ f ′′. 2.9 By virtue of 2.7 – 2.9 , 2.6 becomes ut − uxx αuux βu γu2 δu3 f ′′ [ φxφt − 3φxφxx αφ2 xu1 − αλφxφxx − γλφ2 x − 3δλφ2 xu1 x, t ] f ′ [ φxt − φxxx αφxxu1 αφxu1x βφx 2γφxu1 3δφxu1 ] [ u1t − u1xx αu1u1x βu1 γu1 δu1 ] 0. 2.10 4 Abstract and Applied Analysis Setting the coefficients of f ′′, f ′, f0 to be zero, respectively, it is easy to see from 2.10 that φt ( αu1 − γλ − 3δλu1 ) φx − 3 αλ φxx 0, 2.11 φxt − φxxx αφxxu1 αφxu1x βφx 2γφxu1 3δφxu1 0, 2.12 u1t − u1xx αu1u1x βu1 γu1 δu1 0. 2.13 Substituting 2.8 into 2.1 , we obtain a Bäcklund transformation u x, t λ φx φ u1 x, t , 2.14 where λ α± √ α2 8δ /2δ, φ, u1 satisfy 2.11 – 2.13 . Substituting a seed solution u1 x, t of 1.1 into linear equations 2.11 and 2.12 , then solving 2.11 and 2.12 , we can get a new solution of 1.1 from 2.14 . Thus we can obtain infinite solutions of 1.1 by the Bäcklund transformation 2.14 and 2.11 2.12 from a seed solution of 1.1 . Taking u1 0, by 2.11 – 2.14 , we obtain a transformation u x, t λ φx φ , 2.15 that transforms 1.1 into linear equations φt − γλφx − 3 αλ φxx 0, φt − φxx βφ E, 2.16 where λ α ± √ α2 8δ /2δ, E is an arbitrary constant. Taking u1 −γ ± √ Δ /2δ, from 2.11 – 2.14 we obtain another transformation u x, t −γ ± √ Δ 2δ λ φx φ . 2.17 Equation 1.1 can be solved by solving two linear equations φt ( αu1 − γλ − 3δλu1 ) φx − 3 αλ φxx 0, φxt − φxxx αφxx βφx 2γφxu1 3δφxu1 0, 2.18 where u1 −γ ± √ Δ /2δ, λ α ± √ α2 8δ /2δ, Δ γ2 − 4βδ. 3. Exact Explicit Solutions to 1.1 In this section we want to obtain abundant exact explicit particular solutions of 1.1 from the Bäcklund transformation 2.14 and a trivial solution of 1.1 . Abstract and Applied Analysis 5and Applied Analysis 5 Noting the homogeneous property of 2.16 we can expect that φ in 2.16 is of the form φ x, t A sinh kx ωt ξ0 B cosh kx ωt ξ0 C 3.1 with A, B, C, k, ω, and ξ0 constants to be determined. Substituting 3.1 into 2.16 , one gets a set of nonlinear algebraic equation Aω − γλAk − 3 αλ Bk2 0, Bω − γλBk − 3 αλ Ak2 0, Aω − Bk2 βB 0, Bω −Ak2 βA 0,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bäcklund Transformations: a Link Between Diffusion Models and Hydrodynamic Equations

This work presents a new analytical method to transform exact solutions of linear diffusion equations into exact ones for nonlinear advection-diffusion models. The proposed formulation, based on Bäcklund transformations, is employed to obtain velocity fields for the unsteady two-dimensional Helmholtz equation, starting from analytical solutions of a heat conduction type model.

متن کامل

A New Auto-Bäcklund Transformation and its Applications in Finding Explicit Exact Solutions for the General KdV Equation

In this paper, based on a Lax pair of the Riccati form for the general KdV equation, a new auto-Bäcklund transformation (ABT) is presented. As an application of this ABT, since only integration is needed, a series of explicit and exact solutions can be obtained which contain soliton-like solutions. This approach is important for finding more new and physically significant exact solutions of non...

متن کامل

Multi soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension

As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. III

where λ and m are arbitrary constants and C(U) is an arbitrary smooth function, has been done. The symmetries obtained for constructing exact solutions of the relevant equations have been successfully applied. In the particular case, new exact solutions of nonlinear reactiondiffusion-convection (RDC) equations arising in applications have been found. The most general RDC equation with power fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014