Molecular mechanisms underlying activity-dependent regulation of BDNF expression.

نویسندگان

  • P B Shieh
  • A Ghosh
چکیده

Activity-dependent changes in synaptic strength, which appear to underlie cortical plasticity, require long-lasting biochemical changes in the postsynaptic neuron. An inductive event common to several forms of synaptic plasticity is an influx of calcium into the postsynaptic cell. Calcium acts as a second messenger to set into motion a cascade of biochemical signaling events that leads to new gene expression. Brain-derived neurotrophic factor (BDNF) is one such calcium-regulated gene that appears to be involved in activity-dependent cortical plasticity. Studies of the mechanism by which calcium influx induces BDNF expression have revealed that the BDNF promoter is regulated by two calcium response elements. One of the elements appears to be regulated by a novel transcription factor, while the other element is regulated by the previously characterized transcription factor CREB. The calcium signal is propagated to the CREB-mediated component of BDNF expression by CaM kinase IV. This signaling pathway, which links calcium influx to the induction of BDNF via CaM kinase IV and CREB, is likely to be centrally involved in mediating long-term activity-dependent plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...

متن کامل

A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo.

Mechanisms underlying experience-dependent refinement of cortical connections, especially GABAergic inhibitory circuits, are unknown. By using a line of mutant mice that lack activity-dependent BDNF expression (bdnf-KIV), we show that experience regulation of cortical GABAergic network is mediated by activity-driven BDNF expression. Levels of endogenous BDNF protein in the barrel cortex are str...

متن کامل

Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function.

"Neuronal activity"-dependent transcriptional activation is required for the long-lasting, functional changes that are involved in memory consolidation or drug addiction. Elucidation of the molecular mechanisms underlying the neuronal activity-dependent transcription of synaptic plasticity-related genes has helped towards understanding neuronal function and disorders as well in identifying new ...

متن کامل

Hydroalcoholic Extract of Anchusa Italica Protects Global Cerebral Ischemia-Reperfusion Injury Via a Nitrergic Mechanism

Introduction: In stroke models, Inducible Nitric Oxide Synthase (iNOS) expression initiates cellular toxicity due to excessive Nitric Oxide (NO) generation. Anchusa italica is a medicinal herb with anti-inflammatory, antioxidant and neuroprotective properties. This study evaluated the antioxidant activity and NOS mRNA expression of the Hydroalcoholic Extract Of Anchusa Italica (HEAI) in an expe...

متن کامل

Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin.

Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurobiology

دوره 41 1  شماره 

صفحات  -

تاریخ انتشار 1999