Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater.
نویسندگان
چکیده
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na(+)/K(+)-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA alpha-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and alpha-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell numberxcell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.
منابع مشابه
Expression Profiles of Branchial FXYD Proteins in the Brackish Medaka Oryzias dancena: A Potential Saltwater Fish Model for Studies of Osmoregulation
FXYD proteins are novel regulators of Na(+)-K(+)-ATPase (NKA). In fish subjected to salinity challenges, NKA activity in osmoregulatory organs (e.g., gills) is a primary driving force for the many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on only a limited...
متن کاملDifferent Modulatory Mechanisms of Renal FXYD12 for Na+-K+-ATPase between Two Closely Related Medakas upon Salinity Challenge
Upon salinity challenge, the Na(+)-K(+)-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (...
متن کاملAquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport?
We investigated the salinity-dependent expression dynamics of seven aquaporin paralogs (aqp1a, aqp3a, aqp7, aqp8ab, aqp10a, aqp10b and aqp11a) in several tissues of euryhaline Japanese medaka (Oryzias latipes). All paralogs except aqp7 and aqp10a had a broad tissue distribution, and several were affected by salinity in both osmoregulatory and non-osmoregulatory tissues. In the intestine, aqp1a,...
متن کاملEffects of Clove Oil and Lidocaine-HCl Anesthesia on Water Parameter during Simulated Transportation in the Marine Medaka, Oryzias dancena
Optimum concentrations of anesthetic clove oil and anesthetic lidocaine-HCl were determined for a species of adult marine medaka, Oryzias dancena, over a range of salinity conditions, and investigated in a transport simulation experiment by analyzing various water and physiological parameters. Research indicated that the higher the concentration of anesthetic at each salinity, the shorter the a...
متن کاملTranscriptional Changes Caused by Bisphenol A in Oryzias javanicus, a Fish Species Highly Adaptable to Environmental Salinity
The Javanese medaka, Oryzias javanicus, is a fish highly adaptable to various environmental salinities. Here, we investigated the effects of the environmental pollutant bisphenol A (BPA; an endocrine disrupting chemical) on gene expression levels in this species acclimated to different salinities. Using cDNA microarrays, we detected the induction of differential expression of genes by BPA, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
دوره 151 4 شماره
صفحات -
تاریخ انتشار 2008