Heteroclinic Orbits and Chaotic Dynamics in Planar Fluid Flows

نویسنده

  • A. L. BERTOZZI
چکیده

An extension of the planar Smale-Birkhoff homoclinic theorem to the case of a heteroclinic saddle connection containing a finite number of fixed points is presented. This extension is used to find chaotic dynamics present in certain time-periodic perturbations of planar fluid models. Specifically, the Kelvin-Stuart cat's eye flow is studied, a model for a vortex pattern found in shear layers. A flow on the two-torus with Hamiltonian Ho (27r)-sin (2rx) cos (27rx2) is studied, as well as the evolution equations for an elliptical vortex in a three-dimensional strain flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic and heteroclinic orbits in a modified Lorenz system

This paper presents a mathematically rigorous proof for the existence of chaos in a modified Lorenz system using the theory of Shil’nikov bifurcations of homoclinic and heteroclinic orbits. Together with its dynamical behaviors, which have been extensively studied, the chaotic dynamics of the modified Lorenz system are now much better understood, providing a rigorous theoretic foundation to sup...

متن کامل

Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II

We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-JupiterOterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. More...

متن کامل

Many pulses heteroclinic orbits with a Melnikov method and chaotic dynamics of a parametrically and externally excited thin plateMinghui

The multi-pulse heteroclinic orbits with a Melnikov method and chaotic dynamics in a parametrically and externally excited thin plate are studied in this paper for the first time. The thin plate is subjected to transversal and in-plane excitations, simultaneously. The formulas of the thin plate are derived from the von Kármán equation and Galerkin’s method. The method of multiple scales is used...

متن کامل

Bi-instability and the global role of unstable resonant orbits in a driven laser

Driven class-B lasers are devices which possess quadratic nonlinearities and are known to exhibit chaotic behavior. We describe the onset of global heteroclinic connections which give rise to chaotic saddles. These form the precursor topology which creates both localized homoclinic chaos, as well as global mixed-mode heteroclinic chaos. To locate the relevant periodic orbits creating the precur...

متن کامل

Efficient manifold tracing for planar maps

Invariant manifolds of unstable periodic orbits organize the dynamics of chaotic orbits in phase space. They provide insight into the mechanisms of transport and chaotic advection and have important applications in physical situations involving three-dimensional flows. The numerical determination of invariant manifolds for planar maps is a problem on its own. Efficient and practical techniques ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988