Performance Analysis Cluster and GPU Computing Environment on Molecular Dynamic Simulation of BRV-1 and REM2 with GROMACS

نویسندگان

  • Heru Suhartanto
  • Arry Yanuar
  • Ari Wibisono
چکیده

One of application that needs high performance computing resources is molecular d ynamic. There is some software available that perform molecular dynamic, one of these is a well known GROMACS. Our previous experiment simulating molecular dynamics of Indonesian grown herbal compounds show sufficient speed up on 32 n odes Cluster computing environment. In order to obtain a reliable simulation, one usually needs to run the experiment on the scale of hundred nodes. But this is expensive to develop and maintain. Since the invention of Graphical Processing Units that is also useful for general programming, many applications have been developed to run on this. This paper reports our experiments that evaluate the performance of GROMACS that runs on two different environment, Cluster computing resources and GPU based PCs. We run the experiment on BRV-1 and REM2 compounds. Four different GPUs are installed on the same type of PCs of quad cores; they are Gefore GTS 250, GTX 465, GTX 470 and Quadro 4000. We build a cluster of 16 nodes based on these four quad cores PCs. The preliminary experiment shows that those run on GTX 470 is the best among the other type of GPUs and as well as the cluster computing resource. A speed up around 11 and 12 is gained, while the cost of computer with GPU is only about 25 percent that of Cluster we built.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on The Effect of Temperature on Human Prion Protein Structure through Molecular Dynamic Simulation

Background & Aims: The normal form of the prion protein is called PrPC and its infectious form is called PrPSc. This protein functions like a crystallized core for the transformation of PrPc into an abnormal PrPSc. The aim of the present study was to investigate the effect of temperature on human prion protein structure through molecular dynamic simulation. Methods: In this research, the GROMAC...

متن کامل

Grid Workflow Approach using the CELLmicrocosmos 2.2 MembraneEditor and UNICORE to commit and monitor GROMACS Jobs

Motivation: Molecular dynamic simulations of membrane systems are an important method for the prediction and analysis of physicochemical properties. The CELLmicrocosmos 2.2 MembraneEditor (CmME) provides a comfortable workflow to generate lipid membranes with different conformations. While CmME is intended to generate molecular structures on desktop and mobile computers in a very short time, th...

متن کامل

Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while gra...

متن کامل

AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble

A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and all...

متن کامل

Scaling of the GROMACS 4.6 molecular dynamics code on SuperMUC

Here we report on the performance of GROMACS 4.6 on the SuperMUC cluster at the Leibniz Rechenzentrum in Garching. We carried out benchmarks with three biomolecular systems consisting of eighty thousand to twelve million atoms in a strong scaling test each. The twelve million atom simulation system reached a performance of 49 nanoseconds per day on 32,768 cores.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1210.4251  شماره 

صفحات  -

تاریخ انتشار 2011