The L-isoaspartyl-O-methyltransferase in Caenorhabditis elegans larval longevity and autophagy.
نویسندگان
چکیده
The protein L-isoaspartyl-O-methyltransferase, coded by the pcm-1 gene in Caenorhabditis elegans, participates in the repair of age-damaged proteins. We tested the ability of pcm-1-deficient nematodes to survive starvation stress as developmentally-arrested L1 larvae. We found that pcm-1 mutant L1 larvae do not survive as well as wild-type L1 larvae when incubated in M9 medium without nutrients. We then tested whether the starved L1 larvae could continue development when allowed access to food in a recovery assay. A loss of recovery ability with age was observed for all larvae, with little or no difference between the pcm-1 mutant and wild-type N2 larvae. Interestingly, when L1 larvae were starved in cholesterol-containing S medium or M9 medium supplemented with cholesterol, the survival rates of both mutant and wild-type animals nearly doubles, with pcm-1 larvae again faring more poorly than N2 larvae. Furthermore, L1 larvae cultured in these cholesterol-containing media show an increase in Sudan Black staining over animals cultured in M9 medium. The longevity defects of pcm-1 mutants previously seen in dauer larvae and here in L1 larvae suggest a defect in the ability of pcm-1 mutants to recycle and reuse old cellular components in pathways such as autophagy. Using an autophagosomal marker, we found evidence suggesting that the pcm-1 mutation may inhibit autophagy during dauer formation, suggesting that the absence of protein repair may also interfere with protein degradation pathways.
منابع مشابه
The Interplay between Protein L-Isoaspartyl Methyltransferase Activity and Insulin-Like Signaling to Extend Lifespan in Caenorhabditis elegans
The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in developmen...
متن کاملDo damaged proteins accumulate in Caenorhabditis elegans L-isoaspartate methyltransferase (pcm-1) deletion mutants?
The protein l-isoaspartate (d-aspartate) O-methyltransferase (E.C. 2. 1.1.77) can initiate the conversion of isomerized and racemized aspartyl residues to their normal l-aspartyl forms and has therefore been hypothesized to function as a repair enzyme, responsible for helping to limit the accumulation of damaged proteins in aging organisms. In this study, the effect of a disruption in the pcm-1...
متن کاملProtein-repair and hormone-signaling pathways specify dauer and adult longevity and dauer development in Caenorhabditis elegans.
Protein damage that accumulates during aging can be mitigated by a repair methyltransferase, the l-isoaspartyl-O-methyltransferase. In Caenorhabditis elegans, the pcm-1 gene encodes this enzyme. In response to pheromone, we show that pcm-1 mutants form fewer dauer larvae with reduced survival due to loss of the methyltransferase activity. Mutations in daf-2, an insulin/insulin-like growth facto...
متن کاملTargeted gene disruption of the Caenorhabditis elegans L-isoaspartyl protein repair methyltransferase impairs survival of dauer stage nematodes.
The methylation of abnormal L-isoaspartyl residues by protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77) can lead to their conversion to L-aspartyl residues. For polypeptides damaged by spontaneous reactions that generate L-isoaspartyl residues, these steps represent a protein repair pathway that can limit the accumulation of potentially detrimental proteins in the aging pro...
متن کاملAutophagy and insulin/TOR signaling in Caenorhabditis elegans pcm-1 protein repair mutants.
Biological responses due to nutrient deprivation in the nematode Caenorhabditis elegans, including L1 diapause and autophagy during dauer formation, can be mediated through the linked DAF-2/insulin/IGF receptor and target-of-rapamycin (TOR) kinase pathways. Here we discuss how altered insulin/TOR signaling may underlie the previously reported phenotypes of worms with a null mutation in the pcm-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 303 2 شماره
صفحات -
تاریخ انتشار 2007