D.C. Versus Copositive Bounds for Standard QP
نویسندگان
چکیده
The standard quadratic program (QPS) is minx∈∆ xT Qx, where ∆ ⊂ <n is the simplex ∆ = {x ≥ 0 | ni=1 xi = 1}. QPS can be used to formulate combinatorial problems such as the maximum stable set problem, and also arises in global optimization algorithms for general quadratic programming when the search space is partitioned using simplices. One class of “d.c.” (for “difference between convex”) bounds for QPS is based on writing Q = S−T , where S and T are both positive semidefinite, and bounding xT Sx (convex on ∆) and −xT Tx (concave on ∆) separately. We show that the maximum possible such bound can be obtained by solving a semidefinite programming (SDP) problem. The dual of this SDP problem corresponds to adding a simple constraint to the well-known Shor relaxation of QPS. We show that the max d.c. bound is dominated by another known bound based on a copositive relaxation of QPS, also obtainable via SDP at comparable computational expense. We also discuss extensions of the d.c. bound to more general quadratic programming problems. For the application of QPS to bounding the stability number of a graph, we use a novel formulation of the Lovasz θ number to compare θ, Schrijver’s θ′, and the max d.c. bound.
منابع مشابه
On the accuracy of uniform polyhedral approximations of the copositive cone
We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit....
متن کاملA note on Burer's copositive representation of mixed-binary QPs
In an important paper, Burer [2] recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum of the lifted feasi...
متن کاملAn LPCC approach to nonconvex quadratic programs
Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be accomplished in finite time by solving a linear program with linear complementarity constraints, i.e., an LPCC. Alternatively, this task can be divided into two LPCCs: the first confirms whether t...
متن کاملGlobally solving nonconvex quadratic programming problems via completely positive programming
Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Th...
متن کاملCopositive Relaxation Beats Lagrangian Dual Bounds in Quadratically and Linearly Constrained Quadratic Optimization Problems
We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 33 شماره
صفحات -
تاریخ انتشار 2005