The Inertial Cause of Wing Rotation in Diptera

نویسندگان

  • ROLAND ENNOS
  • A. R. ENNOS
چکیده

The cause of the changes in wing pitch at stroke reversal in Diptera has been investigated. The high compliance of the wing base makes it seem unlikely that pitch changes are caused by active torsion at the wing articulation. The centre of mass of insect wings tends to be behind the centre of torsion of the wing, and it is proposed that wing inertia about the torsional axis alone is responsible for pitch changes as the wing is accelerated at stroke reversal. A simplified inertial model is developed to calculate the angular velocity about the torsional axis that would be caused by wing inertia. The mass distribution and the torsional axis of the wings of two species of flies was found and it was shown that in these animals inertial causes alone could develop the angular velocity in the pitching plane that is observed at stroke reversal. Analysis of the movement of individual regions of the wing shows further that inertial effects will produce the tip to base 'torsion wave' seen in the wing at stroke reversal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy

Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...

متن کامل

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Fruit flies modulate passive wing pitching to generate in-flight turns.

Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free-flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing's tendency to fl...

متن کامل

. bi o - ph ] 5 O ct 2 00 9 Fruit flies modulate passive wing pitching to generate in - flight turns Attila

Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing’s tendency to fl...

متن کامل

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005