Nuclear DNA origin of mitochondrial complex I deficiency in fatal infantile lactic acidosis evidenced by transnuclear complementation of cultured fibroblasts.

نویسندگان

  • V Procaccio
  • B Mousson
  • R Beugnot
  • H Duborjal
  • F Feillet
  • G Putet
  • I Pignot-Paintrand
  • A Lombès
  • R De Coo
  • H Smeets
  • J Lunardi
  • J P Issartel
چکیده

We have studied complex I (NADH-ubiquinone reductase) defects of the mitochondrial respiratory chain in 2 infants who died in the neonatal period from 2 different neurological forms of severe neonatal lactic acidosis. Specific and marked decrease in complex I activity was documented in muscle, liver, and cultured skin fibroblasts. Biochemical characterization and study of the genetic origin of this defect were performed using cultured fibroblasts. Immunodetection of 6 nuclear DNA-encoded (20, 23, 24, 30, 49, and 51 kDa) and 1 mitochondrial DNA-encoded (ND1) complex I subunits in fibroblast mitochondria revealed 2 distinct patterns. In 1 patient, complex I contained reduced amounts of the 24- and 51-kDa subunits and normal amounts of all the other investigated subunits. In the second patient, amounts of all the investigated subunits were severely decreased. The data suggest partial or extensive impairment of complex I assembly in both patients. Cell fusion experiments between 143B206 rho degrees cells, fully depleted of mitochondrial DNA, and fibroblasts from both patients led to phenotypic complementation of the complex I defects in mitochondria of the resulting cybrid cells. These results indicate that the complex I defects in the 2 reported cases are due to nuclear gene mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex I deficiency: clinical features, biochemistry and molecular genetics.

Complex I deficiency is the most frequent mitochondrial disorder presenting in childhood, accounting for up to 30% of cases. As with many mitochondrial disorders, complex I deficiency is characterised by marked clinical and genetic heterogeneity, leading to considerable diagnostic challenges for the clinician, not least because of the involvement of two genomes. The most prevalent clinical pres...

متن کامل

Mitochondrial Superoxide Radicals and MnSOD

Mitochondria were isolated from skin fibroblast cultures derived from healthy individuals (controls) and from a group patients with complex I (NADH-CoQ reductase) deficiency of the mitochondrial respiratory chain. The complex I deficient patients included those with fatal infantile lactic acidosis (FILA), cardiomyopathy with cataracts (CC), hepatopathy with tubulopathy (HT), Leigh’s disease (LD...

متن کامل

Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcrip...

متن کامل

Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase.

Mitochondria were isolated from skin fibroblast cultures derived from healthy individuals (controls) and from a group patients with complex I (NADH-CoQ reductase) deficiency of the mitochondrial respiratory chain. The complex I deficient patients included those with fatal infantile lactic acidosis (FILA), cardiomyopathy with cataracts (CC), hepatopathy with tubulopathy (HT), Leigh's disease (LD...

متن کامل

A novel deficiency of mitochondrial ATPase of nuclear origin.

We report a new type of fatal mitochondrial disorder caused by selective deficiency of mitochondrial ATP synthase (ATPase). A hypotrophic newborn from a consanguineous marriage presented severe lactic acidosis, cardiomegaly and hepatomegaly and died from heart failure after 2 days. The activity of oligomycin-sensitive ATPase was only 31-34% of the control, both in muscle and heart, but the acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 1999