An Evolutionary and Visual Framework for Clustering of DNA Microarray Data
نویسندگان
چکیده
This paper presents a case study to show the competence of our evolutionary and visual framework for cluster analysis of DNA microarray data. The proposed framework joins a genetic algorithm for hierarchical clustering with a set of visual components of cluster tasks given by a tool. The cluster visualization tool allows us to display different views of clustering results as a means of cluster visual validation. The results of the genetic algorithm for clustering have shown that it can find better solutions than the other methods for the selected data set. Thus, this shows the reliability of the proposed framework.
منابع مشابه
به کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملبه کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملA visual analytics framework for cluster analysis of DNA microarray data
Please cite this article in press as: Castellanos-G with Applications (2012), http://dx.doi.org/10.10 Cluster analysis of DNA microarray data is an important but difficult task in knowledge discovery processes. Many clustering methods are applied to analysis of data for gene expression, but none of them is able to deal with an absolute way with the challenges that this technology raises. Due to...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of integrative bioinformatics
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2013