Anderson localization for 2D discrete Schrödinger operator with random vector potential

نویسندگان

  • Frédéric Klopp
  • Shu Nakamura
چکیده

We prove the Anderson localization near the bottom of the spectrum for two dimensional discrete Schrödinger operators with a class of random vector potentials and no scalar potentials. Main lemmas are the Lifshitz tail and the Wegner estimate on the integrated density of states. Then, the Anderson localization, i.e., the pure point spectrum with exponentially decreasing eigenfunctions, is proved by the standard multiscale argument.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies in localization proofs for one-dimensional random Schrödinger operators

Recent results on localization, both exponential and dynamical, for various models of one-dimensional, continuum, random Schrödinger operators are reviewed. This includes Anderson models with indefinite single site potentials, the Bernoulli– Anderson model, the Poisson model, and the random displacement model. Among the tools which are used to analyse these models are generalized spectral avera...

متن کامل

L-convergence of a Random Schrödinger to a Linear Boltzmann Evolution

on l(Z). Here, ∆ is the nearest neighbor discrete Laplacian, 0 < λ ≪ 1 is a small coupling constant that defines the disorder strength, and ωy are independent, identically distributed Gaussian random variables. While disorder-induced insulation at strong disorders λ ≫ 1 and extreme energies is nowadays well understood (Anderson localization, [1, 6]), the problem of conduction in the weak coupli...

متن کامل

Anderson Localization for the Discrete One-dimensional Quasi-periodic Schrödinger Operator with Potential Defined by a Gevrey-class Function

In this paper we consider the discrete one-dimensional Schrödinger operator with quasi-periodic potential vn = λv(x+nω). We assume that the frequency ω satisfies a strong Diophantine condition and that the function v belongs to a Gevrey class, and it satisfies a transversality condition. Under these assumptions we prove in the perturbative regime that for large disorder λ and for most frequenci...

متن کامل

Random Schrödinger Operators: Universal Localization, Correlations, and Interactions

(in alphabetic order by speaker surname) Speaker: Boumaza, Hakim (Keio University) Title: Localization for a matrix-valued Anderson-Bernoulli model Abstract: We will present a localization result, both in the exponential and dynamical senses, for a random, matrix-valued, one-dimensional continuous Schrödinger operator acting on L2(R)⊗ CN , N ≥ 1. For this, we combine results of Klein, Lacroix a...

متن کامل

Dynamical Localization for Unitary Anderson Models

This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002