Finite Difference Schemes for Nonlinear Complex Reaction-diffusion Processes: Stability Analysis
نویسنده
چکیده
In this paper we establish the stability condition of a general class of finite difference schemes applied to nonlinear complex reaction-diffusion equations. We consider the numerical solution of both implicit and semi-implicit discretizations. To illustrate the theoretical results we present some numerical examples computed with a semi-implicit scheme applied to a nonlinear equation.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملStability of Finite Difference Schemes for Complex Diffusion Processes
Abstract: Complex diffusion is a common and broadly used denoising procedure in image processing. The method is based on an explicit finite difference scheme applied to a diffusion equation with a proper complex diffusion parameter in order to preserve edges and the main features of the image, while eliminating noise. In this paper we present a rigorous proof for the stability condition of comp...
متن کاملConvergence of Finite Difference Schemes for Nonlinear Complex Reaction-Diffusion Processes
متن کامل
Numerical Study of One Dimensional Fishers KPP Equation with Finite Difference Schemes
In this paper, we originate results with finite difference schemes to approximate the solution of the classical Fisher Kolmogorov Petrovsky Piscounov (KPP) equation from population dynamics. Fisher’s equation describes a balance between linear diffusion and nonlinear reaction. Numerical example illustrates the efficiency of the proposed schemes, also the Neumann stability analysis reveals that ...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کامل