Miranda-persson’s Problem on Extremal Elliptic K3 Surfaces
نویسندگان
چکیده
In one of their early works, Miranda and Persson have classified all possible configurations of singular fibers for semistable extremal elliptic fibrations on K3 surfaces. They also obtained the Mordell-Weil groups in terms of the singular fibers except for 17 cases where the determination and the uniqueness of the groups were not settled. In this paper, we settle these problems completely. We also show that for all cases with ‘larger’ Mordell-Weil groups, this group, together with the singular fibre type, determines uniquely the fibration structure of the K3 surface (up to based fibre-space isomorphisms).
منابع مشابه
Integral Models of Extremal Rational Elliptic Surfaces
Miranda and Persson classified all extremal rational elliptic surfaces in characteristic zero. We show that each surface in Miranda and Persson’s classification has an integral model with good reduction everywhere (except for those of type X11( j), which is an exceptional case), and that every extremal rational elliptic surface over an algebraically closed field of characteristic p > 0 can be o...
متن کاملElliptic Fibrations of Some Extremal Semi-stable K3 Surfaces
This paper presents explicit equations over Q for 32 extremal semistable elliptic K3 surfaces. They are realized as pull-back of non-semi-stable extremal rational elliptic surfaces via base change. Together with work of J. Top and N. Yui which exhibited the same procedure for the semi-stable extremal rational elliptic surfaces, this exhausts this approach to produce extremal semi-stable ellipti...
متن کاملElliptic Fibrations of Some Extremal K3 Surfaces
This paper is concerned with the construction of extremal elliptic K3 surfaces. It gives a complete treatment of those fibrations which can be derived from rational elliptic surfaces by easy manipulations of their Weierstrass equations. In particular, this approach enables us to find explicit equations for 38 semi-stable extremal elliptic K3 fibrations, 32 of which are indeed defined over Q. Th...
متن کاملClassification of Extremal Elliptic K3 Surfaces and Fundamental Groups of Open K3 Surfaces
We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an ADE-configuration of smooth rational curves on a K3 surface to be trivial (Proposition 4.1 and Theorem 4.3).
متن کاملRational double points on supersingular K3 surfaces
We investigate configurations of rational double points with the total Milnor number 21 on supersingular K3 surfaces. The complete list of possible configurations is given. As an application, we also give the complete list of extremal (quasi-)elliptic fibrations on supersingular K3 surfaces.
متن کامل