De-anonymizing Social Networks with Overlapping Community Structure

نویسندگان

  • Luoyi Fu
  • Xinyu Wu
  • Zhongzhao Hu
  • Xinzhe Fu
  • Xinbing Wang
چکیده

The advent of social networks poses severe threats on user privacy as adversaries can de-anonymize users’ identities by mapping them to correlated cross-domain networks. Without ground-truth mapping, prior literature proposes various cost functions in hope of measuring the quality of mappings. However, there is generally a lacking of rationale behind the cost functions, whose minimizer also remains algorithmically unknown. We jointly tackle above concerns under a more practical social network model parameterized by overlapping communities, which, neglected by prior art, can serve as side information for de-anonymization. Regarding the unavailability of groundtruth mapping to adversaries, by virtue of the Minimum Mean Square Error (MMSE), our first contribution is a well-justified cost function minimizing the expected number of mismatched users over all possible true mappings. While proving the NPhardness of minimizing MMSE, we validly transform it into the weighted-edge matching problem (WEMP), which, as disclosed theoretically, resolves the tension between optimality and complexity: (i) WEMP asymptotically returns a negligible mapping error in large network size under mild conditions facilitated by higher overlapping strength; (ii) WEMP can be algorithmically characterized via the convex-concave based de-anonymization algorithm (CBDA), perfectly finding the optimum of WEMP. Extensive experiments further confirm the effectiveness of CBDA under overlapping communities, in terms of averagely 90% reidentified users in the rare true cross-domain co-author networks when communities overlap densely, and roughly 70% enhanced re-identification ratio compared to non-overlapping cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Overlapping Community Detection in Social Networks Based on Stochastic Simulation

Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

De-anonymizing social networks

The problem of de-anonymizing social networks is to identify the same users between two anonymized social networks [7] (Figure 1). Network de-anonymization task is of multifold significance, with user profile enrichment as one of its most promising applications. After the deanonymization and alignment, we can aggregate and enrich user profile information from different online networking service...

متن کامل

A Comprehensive Review of Overlapping Community Detection Algorithms for Social Networks

Community structure is an interesting feature found in many social networks which signifies that there is intense interaction between some individuals. These communities have a tendency to overlap with each other as there are nodes that can belong to multiple communities simultaneously. Detection of such overlapping communities is a challenging task; it still remains a topic of interest for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04282  شماره 

صفحات  -

تاریخ انتشار 2017