Adenovirus-Mediated Small-Interference RNA for In Vivo Silencing of Angiotensin AT
نویسندگان
چکیده
Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for selectively silencing AT1a or AT1b receptor subtypes in cultured Neuro-2a cells using real-time RT-PCR. For in vivo functional studies, we used C57BL mice with arterial telemetric probes and computerized licking monitors to test the effect of adenovirus carrying the DNA sequence coding AT1a shRNA (Ad-AT1a-shRNA). Ad-AT1a-shRNA was injected into the lateral ventricle (intracerebroventricular) or the brain stem nucleus tractus solitaries/dorsal vagal nucleus (NTS/DVN) with measurement of water intake, blood pressure (BP), and heart rate (HR) for up to 20 days after injection. Tissue culture studies verified the specificity and the efficiency of the constructs. In animal studies, -galactosidase staining and Ang receptor binding assays showed expression of shRNA and downregulation of Ang AT1 receptors in the subfornical organ and NTS/DVN by 70%. Intracerebroventricular injection of Ad-AT1a-shRNA increased water intake with no effect on BP or HR. In contrast, microinjection of Ad-AT1a-shRNA into NTS/DVN caused a decrease in BP with no effect on HR or water intake. Results demonstrate the use of the RNA interference method in site-directed silencing of gene expression and provide a method for the in vivo study of Ang AT1 receptor function. (Hypertension. 2006;47:230-237.)
منابع مشابه
Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملAdenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain.
Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for sel...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملDevelopment of Novel Genetically Engineered Adenoviruses Based on Functional Analyses of Adenovirus-encoded Small RNAs.
The adenovirus (Ad) genome encodes two small noncoding RNAs, VA-RNA I and II, which support Ad replication by antagonizing the antiviral action associated with the Ad-induced activation of double-stranded RNA-dependent protein kinase (PKR). VA-RNAs are also processed in a manner similar to microRNAs (miRNAs), resulting in the production of VA-RNA-derived miRNAs (mivaRNAs). mivaRNAs are incorpor...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006