Vibrio vulnificus biotype 2 serovar E gne but not galE is essential for lipopolysaccharide biosynthesis and virulence.

نویسندگان

  • Esmeralda Valiente
  • Natalia Jiménez
  • Susana Merino
  • Juan M Tomás
  • Carmen Amaro
چکیده

This work aimed to establish the role of gne (encoding UDP-GalNAc 4-epimerase activity) and galE (encoding UDP-Gal-4-epimerase activity) in the biosynthesis of surface polysaccharides, as well as in the virulence for eels and humans of the zoonotic serovar of Vibrio vulnificus biotype 2, serovar E. DNA sequence data revealed that gne and galE are quite homologous within this species (> or =90% homology). Mutation in gne of strain CECT4999 increased the surface hydrophobicity, produced deep alterations in the outer membrane architecture, and resulted in noticeable increases in the sensitivity to microcidal peptides (MP), to eel and human sera, and to phagocytosis/opsonophagocytosis. Furthermore, significant attenuation of virulence for eels and mice was observed. By contrast, mutation in galE did not alter the cellular surface, did not increase the sensitivity to MP, serum, or phagocytosis, and did not affect the virulence for fish and mice. The change in the attenuated-virulence phenotype produced by a mutation in gne was correlated with the loss of the O-antigen lipopolysaccharide (LPS), while the capsule was maintained. Complementation of a gne-deficient mutant restored the LPS structure together with the whole virulence phenotype. In conclusion, gne, but not galE, is essential for LPS biosynthesis and virulence in the zoonotic serovar of V. vulnificus biotype 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High growing ability of Vibrio vulnificus biotype 1 is essential for production of a toxic metalloprotease causing systemic diseases in humans.

Vibrio vulnificus biotype 1, a causative agent of fatal septicemia or wound infection in humans, is known to produce a toxic metalloprotease as an important virulence determinant. V. vulnificus biotype 2 (serovar E), a primary eel pathogen, was found to elaborate an extracellular metalloprotease that was indistinguishable from that of biotype 1. The potential of V. vulnificus biotype 1 for prod...

متن کامل

Comparative study of biological properties and electrophoretic characteristics of lipopolysaccharide from eel-virulent and eel-A virulent Vibrio vulnificus strains.

In Vibrio vulnificus, virulence for eels is associated with serovar E strains. In this study, we investigated some biological properties of purified lipopolysaccharides (LPSs) from serovar E and non-serovar E strains. Purified LPSs retained their O-polysaccharidic side chains and did not show any differences that could be related to host specificity, except for serological differences.

متن کامل

Variable Virulence of Biotype 3 Vibrio vulnificus due to MARTX Toxin Effector Domain Composition

Vibrio vulnificus is an environmental organism that causes septic human infections characterized by high morbidity and mortality. The annual incidence and global distribution of this pathogen are increasing as ocean waters warm. Clinical strains exhibit variations in the primary virulence toxin, suggesting a potential for the emergence of new strains with altered virulence properties. A clonal ...

متن کامل

MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice

Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsi...

متن کامل

Spontaneous quinolone resistance in the zoonotic serovar of Vibrio vulnificus.

This work demonstrates that Vibrio vulnificus biotype 2, serovar E, an eel pathogen able to infect humans, can become resistant to quinolone by specific mutations in gyrA (substitution of isoleucine for serine at position 83) and to some fluoroquinolones by additional mutations in parC (substitution of lysine for serine at position 85). Thus, to avoid the selection of resistant strains that are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 2008