Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer*
نویسنده
چکیده
It has been found that the bimetallic nanoclusters often have so-called core/shell structure if they are prepared by alcohol-reduction of two kinds of noble metal ions in the presence of a water-soluble polymer like poly(N-vinyl-2-pyrolidone)(PVP), and that the core/ shell structured bimetallic nanoclusters have much higher catalytic activity than the corresponding monometallic nanoclusters. Here, several kinds of monometallic and bimetallic nanoclusters are synthesized by the similar method, and the catalyses are measured. Thus, the colloidal dispersions of Au, Pt, Pd, Rh, and Ru monometallic, and Au/Pt, Au/Pd, Au/Rh, and Pt/Ru bimetallic nanoclusters were synthesized and applied as the catalysts for visiblelight-induced hydrogen generation. The core/shell structures are analyzed mainly by UV–vis spectra. The rate of electron transfer from the methyl viologen cation radical to the metal nanoclusters is proportional to the hydrogen generation rate at the steady state. All the electrons accepted by the metal nanoclusters are used for the hydrogen generation. Both electron transfer and hydrogen generation rates increase when the bimetallic nanoclusters are used in place of the corresponding monometallic nanoclusters. The most active catalysts were Au/Rh and Pt/Ru bimetallic nanoclusters.
منابع مشابه
Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications
Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, wh...
متن کاملSynthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique
Nickel-molybdenum oxidebimetallic nanoparticles were synthesized in ethylene glycol using the microwave irradiation technique. According to the results, successive reduction of nickel and molybdenum ions, followed by thermal treatment of obtained nanoparticles led to formation of core-shell structured nickel-molybdenum oxide nanoparticles. According to the results, the thickness of the s...
متن کاملStructural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity
In this paper, structural, magnetic, optical, and photocatalytic properties of core-shell structure Fe3O4@GO nanoparticles have been compared with Fe3O4 nanoparticles in the degradation of methyl blue and methyl orange. For this purpose, GO nanosheets were wrapped around the APTMS-Fe3O4 nanoparticles and then charact...
متن کاملPreparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters
Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attenti...
متن کاملRational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light.
High-quality one-dimensional WO3/CdS core/shell nanowire arrays used as photoanodes in photoelectrochemical (PEC) cells were for the first time prepared via a rational, two-step chemical vapor deposition process. The narrow band-gap CdS shell was homogeneously coated on the entire surface of as-grown WO3 core nanowire arrays, forming coaxial heterostructures. The one-dimensional core/shell hete...
متن کامل