A Fast Automatic Method for 3D Volume Segmentation of the Human Cerebrovascular

نویسندگان

  • M. Sabry
  • Aly A. Farag
  • Stephen Hushek
  • Thomas Moriarty
چکیده

We present a new method for 3-D volume segmentation of the human cerebrovascular structures from Magnetic Resonance Angiograms (MRA) and Magnetic Resonance Ventriculargrams (MRV). A slice through the volume containing large vein or artery structures is chosen, which becomes the seed location for the segmentation process. A modified 3-D computer graphics based region-filling algorithm is used to sweep the vascular tree from seed locations in order to track and label the vascular structure. The labeled-segmented images are extracted and a 3-D model is created using VTK toolkit. The 3-D model can then be viewed on a stereo graphics capable workstation or in a Virtual Reality environment. We also present a new maximum intensity projection (MIP) based technique for validating the results. We implemented MIP and used it to project both the segmented and original volume at different angles. Hence, the resultant images from both volumes can be compared side by side, which facilitates validation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic Segmentation of the Gross Tumor Volume in Prostate Carcinoma Using Fuzzy Clustering in Gallium-68 PSMA PET/CT Scan

Introduction: Modern radiotherapy (RT) techniques allow a highly precise deposition of the radiation dose in tumor. So, high conformal tumor doses can be reached while sparing critical organs at risk. Materials and Methods: This study was conducted in three phases. In the first phase; Fourteen patients with primary or recurrent prostate cancer receive Gallium-...

متن کامل

A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images

Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...

متن کامل

Fast and Robust Semi-automatic Liver Segmentation with Haptic Interaction

We present a method for semi-automatic segmentation of the liver from CT scans. True 3D interaction with haptic feedback is used to facilitate initialization, i.e., seeding of a fast marching algorithm. Four users initialized 52 datasets and the mean interaction time was 40 seconds. The segmentation accuracy was verified by a radiologist. Volume measurements and segmentation precision show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002