Structure-based discovery of substituted 4,5'-bithiazoles as novel DNA gyrase inhibitors.
نویسندگان
چکیده
Bacterial DNA gyrase is a well-established and validated target for the development of novel antibacterials. Starting from the available structural information about the binding of the natural product inhibitor, clorobiocin, we identified a novel series of 4'-methyl-N(2)-phenyl-[4,5'-bithiazole]-2,2'-diamine inhibitors of gyrase B with a low micromolar inhibitory activity by implementing a two-step structure-based design procedure. This novel class of DNA gyrase inhibitors was extensively investigated by various techniques (differential scanning fluorimetry, surface plasmon resonance, and microscale thermophoresis). The binding mode of the potent inhibitor 18 was revealed by X-ray crystallography, confirming our initial in silico binding model. Furthermore, the high resolution of the complex structure allowed for the placement of the Gly97-Ser108 flexible loop, thus revealing its role in binding of this class of compounds. The crystal structure of the complex protein G24 and inhibitor 18 provides valuable information for further optimization of this novel class of DNA gyrase B inhibitors.
منابع مشابه
Novel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملDiscovery of novel DNA gyrase inhibitors by high-throughput virtual screening.
The bacterial type II topoisomerases DNA gyrase and topoisomerase IV are validated targets for clinically useful quinolone antimicrobial drugs. A significant limitation to widely utilized quinolone inhibitors is the emergence of drug-resistant bacteria due to an altered DNA gyrase. To address this problem, we have used structure-based molecular docking to identify novel drug-like small molecule...
متن کاملApplication of a Novel Microtitre Plate-Based Assay for the Discovery of New Inhibitors of DNA Gyrase and DNA Topoisomerase VI
DNA topoisomerases are highly exploited targets for antimicrobial drugs. The spread of antibiotic resistance represents a significant threat to public health and necessitates the discovery of inhibitors that target topoisomerases in novel ways. However, the traditional assays for topoisomerase activity are not suitable for the high-throughput approaches necessary for drug discovery. In this stu...
متن کاملProgress in HIV-1 integrase inhibitors: A review of their chemical structure diversity
HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 55 14 شماره
صفحات -
تاریخ انتشار 2012