Reeb Graphs Through Local Binary Patterns

نویسندگان

  • Ines Janusch
  • Walter G. Kropatsch
چکیده

This paper presents an approach to derive critical points of a shape, the basis of a Reeb graph, using a combination of a medial axis skeleton and features along this skeleton. A Reeb graph captures the topology of a shape. The nodes in the graph represent critical points (positions of change in the topology), while edges represent topological persistence. We present an approach to compute such critical points using Local Binary Patterns. For one pixel the Local Binary Pattern feature vector is derived comparing this pixel to its neighbouring pixels in an environment of a certain radius. We start with an initial segmentation and a medial axis representation. Along this axis critical points are computed using Local Binary Patterns with the radius, defining the neighbouring pixels, set a bit larger than the radius according to the medial axis transformation. Critical points obtained in this way form the node set in a Reeb graph, edges are given through the connectivity of the skeleton. This approach aims at improving the representation of flawed segmented data. In the same way segmentation artefacts, as for example single pixels representing noise, may be corrected based on this analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reeb Graphs of Curves Are Stable under Function Perturbations

Reeb graphs provide a method to combinatorially describe the shape of a manifold endowed with a Morse function. One question deserving attention is whether Reeb graphs are robust against function perturbations. Focusing on 1-dimensional manifolds, we define an editing distance between Reeb graphs of curves, in terms of the cost necessary to transform one graph into another through editing moves...

متن کامل

Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs

The Reeb graph is a construction that studies a topological space through the lens of a real valued function. It has been commonly used in applications, however its use on real data means that it is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently, several metrics on the set of Reeb graphs have been proposed. In this paper, we focus on two: the functi...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

Local Equivalence and Intrinsic Metrics between Reeb Graphs

As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances ...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015