Phospho-iTRAQ data article: Assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry
نویسندگان
چکیده
The ability to distinguish between phosphopeptides of high and low stoichiometry is essential to discover the true extent of protein phosphorylation. We here extend the strategy whereby a peptide sample is briefly split in two identical parts and differentially labeled preceding the phosphatase treatment of one part (Pflieger et al., 2008. Mol. Cell. Proteomics, 7: 326-46 [1]; Wu et al., 2011. Nat. Methods, 8: 677-83 [2]). Our Phospho-iTRAQ method focuses on the unmodified counterparts of phosphorylated peptides, which thus circumvents the ionization, fragmentation, and phospho-enrichment difficulties that hamper quantitation of stoichiometry in most common phosphoproteomics methods. Since iTRAQ enables multiplexing, simultaneous (phospho)proteome comparison between internal replicates and multiple samples is possible. The technique was validated on multiple instrument platforms by adding internal standards of high stoichiometry to a complex lysate of control and EGF-stimulated HeLa cells. To demonstrate the flexibility of PhosphoiTRAQ with regards to the experimental setup and data mining, the proteome coverage was extended through gel fractionation, while an internal replicate measurement creates more stringent data analysis opportunities. The latter allows other researchers to set their own threshold for selecting potential phosphorylation events in the dataset presented here, depending on the biological question or corroboration under investigation. The latest developments in MS instrumentation promise to further increase the resolution of the stoichiometric measurement of Phospho-iTRAQ in the future. The data accompanying the manuscript on this approach (Glibert et al., 2015, J. Proteome Res. 14: 2015, 839-49 [5]) have been deposited to the ProteomeXchange with identifier PXD001574.
منابع مشابه
Phospho-iTRAQ: assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry.
The ability to distinguish between phosphopeptides of high and low stoichiometry is essential to discover the true extent of protein phosphorylation. We here extend the strategy whereby a peptide sample is briefly split in two identical parts and differentially labeled preceding the phosphatase treatment of one part. Our use of isobaric tags for relative and absolute quantitation (iTRAQ) marks ...
متن کاملQualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations.
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular c...
متن کاملQualitative and Quantitative Analyses of Protein Phosphorylation in Naive and Stimulated Mouse Synaptosomal Preparations*□S
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular c...
متن کاملMining Temporal Patterns from iTRAQ Mass Spectrometry(LC-MS/MS) Data
Large-scale proteomic analysis is emerging as a powerful technique in biology and relies heavily on data acquired by state-of-the-art mass spectrometers. As with any other field in Systems Biology, computational tools are required to deal with this ocean of data. iTRAQ (isobaric Tags for Relative and Absolute quantification) is a technique that allows simultaneous quantification of proteins fro...
متن کاملA hierarchical statistical modeling approach to analyze proteomic isobaric tag for relative and absolute quantitation data
MOTIVATION Isobaric tag for relative and absolute quantitation (iTRAQ) is a widely used method in quantitative proteomics. A robust data analysis strategy is required to determine protein quantification reliability, i.e. changes due to biological regulation rather than technical variation, so that proteins that are differentially expressed can be identified. METHODS Samples were created by mi...
متن کامل