Minimization via Duality
نویسندگان
چکیده
We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object.
منابع مشابه
On the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملUnifying Divergence Minimization and Statistical Inference Via Convex Duality
In this paper we unify divergence minimization and statistical inference by means of convex duality. In the process of doing so, we prove that the dual of approximate maximum entropy estimation is maximum a posteriori estimation. Moreover, our treatment leads to stability and convergence bounds for many statistical learning problems. Finally, we show how an algorithm by Zhang can be used to sol...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملConstrained Discrete Optimization via Dual Space Search
This paper proposes a novel algorithm for solving NP-hard constrained discrete minimization problems whose unconstrained versions are solvable in polynomial time such as constrained submodular function minimization. Applications of our algorithm include constrained MAP inference in Markov Random Fields, and energy minimization in various computer vision problems. Our algorithm assumes the exist...
متن کاملDistributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization
Designing distributed algorithms for empirical risk minimization (ERM) has become an active research topic in recent years because of the practical need to deal with the huge volume of data. In this paper, we propose a general framework for training an ERM model via solving its dual problem in parallel over multiple machines. Our method provides a versatile approach for many large-scale machine...
متن کامل