Coordinated excitatory effect of GABAergic interneurons on three feeding motor programs in the mollusk Clione limacina.

نویسندگان

  • Tigran P Norekian
  • Aleksey Y Malyshev
چکیده

Coordination between different motor centers is essential for the orderly production of all complex behaviors. Understanding the mechanisms of such coordination during feeding behavior in the carnivorous mollusk Clione limacina is the main goal of the current study. A bilaterally symmetrical interneuron identified in the cerebral ganglia and designated Cr-BM neuron produced coordinated activation of neural networks controlling three main feeding structures: prey capture appendages called buccal cones, chitinous hooks used for prey extraction from the shell, and the toothed radula. The Cr-BM neuron produced strong excitatory inputs to motoneurons controlling buccal cone protraction. It also induced a prominent activation of the neural networks controlling radula and hook rhythmic movements. In addition to the overall activation, Cr-BM neuron synaptic inputs to individual motoneurons coordinated their activity in a phase-dependent manner. The Cr-BM neuron produced depolarizing inputs to the radula protractor and hook retractor motoneurons, which are active in one phase, and hyperpolarizing inputs to the radula retractor and hook protractor motoneurons, which are active in the opposite phase. The Cr-BM neuron used GABA as its neurotransmitter. It was found to be GABA-immunoreactive in the double-labeling experiments. Exogenous GABA mimicked the effects produced by Cr-BM neuron on the postsynaptic neurons. The GABA antagonists bicuculline and picrotoxin blocked Cr-BM neuron-induced PSPs. The prominent coordinating effect produced by the Cr-BM neuron on the neural networks controlling three major elements of the feeding behavior in Clione suggests that this interneuron is an important part of the higher-order system for the feeding behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic activation of startle motoneurons by a pair of cerebral interneurons in the pteropod mollusk Clione limacina.

The holoplanktonic pteropod mollusk Clione limacina exhibits an active escape behavior that is characterized by fast swimming away from the source of potentially harmful stimuli. The initial phase of escape behavior is a startle response that is controlled by pedal motoneurons whose activity is independent of the normal swim pattern generator. In this study, a pair of cerebral interneurons is d...

متن کامل

Neural mechanisms underlying co-activation of functionally antagonistic motoneurons during a Clione feeding behavior.

The ability of some neural networks to produce multiple motor patterns required during different behaviors is a well-documented phenomenon. We describe here a dramatic transition from coordinated inhibition between two functionally antagonistic groups of motoneurons to their co-activation in the feeding neural network of the predatory mollusk Clione limacina. To seize its prey, Clione uses spec...

متن کامل

Phase-locked coordination between two rhythmically active feeding structures in the mollusk Clione limacina. I. Motor neurons.

Coordination between different motor centers is essential for the orderly production of all complex behaviors, in both vertebrates and invertebrates. The current study revealed that rhythmic activities of two feeding structures of the pteropod mollusk Clione limacina, radula and hooks, which are used to extract the prey from its shell, are highly coordinated in a phase-dependent manner. Hook pr...

متن کامل

GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina.

Afterdischarges represent a prominent characteristic of the neural network that controls prey capture reactions in the carnivorous mollusc Clione limacina. Their main functional implication is transformation of a brief sensory input from a prey into a lasting prey capture response. The present study, which focuses on the neuronal mechanisms of afterdischarges, demonstrates that a single pair of...

متن کامل

Coordination of startle and swimming neural systems in the pteropod mollusk Clione limacina: role of the cerebral cholinergic interneuron.

The holoplanktonic pteropod mollusk Clione limacina has a unique startle system that provides a very fast, ballistic movement of the animal during escape or prey capture behaviors. The startle system consists of two groups of large pedal motoneurons that control ventral or dorsal flexions of the wings. Although startle motoneurons innervate the same musculature used during normal swimming, they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2005