Overexpression of cGMP-dependent protein kinase I (PKG-I) attenuates ischemia-reperfusion-induced kidney injury.
نویسندگان
چکیده
cGMP-dependent protein kinase (PKG) is a multifunctional protein. Whether PKG plays a role in ischemia-reperfusion-induced kidney injury (IRI) is unknown. In this study, using an in vivo mouse model of renal IRI, we determined the effect of renal IRI on kidney PKG-I levels and also evaluated whether overexpression of PKG-I attenuates renal IRI. Our studies demonstrated that PKG-I levels (mRNA and protein) were significantly decreased in the kidney from mice undergoing renal IRI. Moreover, PKG-I transgenic mice had less renal IRI, showing improved renal function and less tubular damage compared with their wild-type littermates. Transgenic mice in the renal IRI group had decreased tubular cell apoptosis accompanied by decreased caspase 3 levels/activity and increased Bcl-2 and Bag-1 levels. In addition, transgenic mice undergoing renal IRI demonstrated reduced macrophage infiltration into the kidney and reduced production of inflammatory cytokines. In vitro studies showed that peritoneal macrophages isolated from transgenic mice had decreased migration compared with control macrophages. Taken together, these results suggest that PKG-I protects against renal IRI, at least in part through inhibiting inflammatory cell infiltration into the kidney, reducing kidney inflammation, and inhibiting tubular cell apoptosis.
منابع مشابه
Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function.
Cisplatin is widely used to treat malignancies. However, its major limitation is the development of dose-dependent nephrotoxicity. The precise mechanisms of cisplatin-induced kidney damage remain unclear, and the renoprotective agents during cisplatin treatment are still lacking. Here, we demonstrated that the expression and activity of cGMP-dependent protein kinase-I (PKG-I) were reduced in ci...
متن کاملVasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms.
Diabetes mellitus increases morbidity/mortality of ischemic heart disease. Although atrial natriuretic peptide and C-type natriuretic peptide reduce the myocardial ischemia-reperfusion damage in nondiabetic rats, whether vasonatrin peptide (VNP), the artificial synthetic chimera of atrial natriuretic peptide and C-type natriuretic peptide, confers cardioprotective effects against ischemia-reper...
متن کاملcGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism.
Increasing evidence suggests that endothelial cytotoxicity from reactive oxygen species (ROS) contributes to the pathogenesis of acute lung injury. Treatments designed to increase intracellular cGMP attenuate ROS-mediated apoptosis and necrosis in several cell types, but the mechanisms are not understood, and the effect of cGMP on pulmonary endothelial cell death remains controversial. In the c...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملMethanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms
Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 302 5 شماره
صفحات -
تاریخ انتشار 2012