Objective Bayesianism and the Maximum Entropy Principle
نویسندگان
چکیده
Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities, they should be calibrated to our evidence of physical probabilities, and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism are usually justified in different ways. In this paper we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem.
منابع مشابه
Justifying Objective Bayesianism on Predicate Languages
Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian ...
متن کاملObjective Bayesianism, Bayesian conditionalisation and voluntarism
Objective Bayesianism has been criticised on the grounds that objective Bayesian updating, which on a finite outcome space appeals to the maximum entropy principle, differs from Bayesian conditionalisation. The main task of this paper is to show that this objection backfires: the difference between the two forms of updating reflects negatively on Bayesian conditionalisation rather than on objec...
متن کاملObjective Bayesian Nets
I present a formalism that combines two methodologies: objective Bayesianism and Bayesian nets. According to objective Bayesianism, an agent’s degrees of belief (i) ought to satisfy the axioms of probability, (ii) ought to satisfy constraints imposed by background knowledge, and (iii) should otherwise be as non-committal as possible (i.e. have maximum entropy). Bayesian nets offer an efficient ...
متن کاملComparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems
In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...
متن کاملMaximum Entropy Analysis for G/G/1 Queuing System (TECHNICAL NOTE)
This paper provides steady state queue-size distribution for a G/G/1 queue by using principle of maximum entropy. For this purpose we have used average queue length and normalizing condition as constraints to derive queue-size distribution. Our results give good approximation as demonstrated by taking a numerical illustration. In particular case when square coefficient of variation of inter-arr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013