Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
نویسندگان
چکیده
Myogenic populations of the avian head arise within both epithelial (somitic) and mesenchymal (unsegmented) mesodermal populations. The former, which gives rise to neck, tongue, laryngeal, and diaphragmatic muscles, show many similarities to trunk axial, body wall, and appendicular muscles. However, muscle progenitors originating within unsegmented head mesoderm exhibit several distinct features, including multiple ancestries, the absence of several somite lineage-determining regulatory gene products, diverse locations relative to neuraxial and pharyngeal tissues, and a prolonged and necessary interaction with neural crest cells. The object of this study has been to characterize the spatial and temporal patterns of early muscle regulatory gene expression and subsequent myosin heavy chain isoform appearance in avian mesenchyme-derived extraocular and branchial muscles, and compare these with expression patterns in myotome-derived neck and tongue muscles. Myf5 and myoD transcripts are detected in the dorsomedial (epaxial) region of the occipital somites before stage 12, but are not evident in the ventrolateral domain until stage 14. Within unsegmented head mesoderm, myf5 expression begins at stage 13.5 in the second branchial arch, followed within a few hours in the lateral rectus and first branchial arch myoblasts, then other eye and branchial arch muscles. Expression of myoD is detected initially in the first branchial arch beginning at stage 14.5, followed quickly by its appearance in other arches and eye muscles. Multiple foci of myoblasts expressing these transcripts are evident during the early stages of myogenesis in the first and third branchial arches and the lateral rectus-pyramidalis/quadratus complex, suggesting an early patterned segregation of muscle precursors within head mesoderm. Myf5-positive myoblasts forming the hypoglossal cord emerge from the lateral borders of somites 4 and 5 by stage 15 and move ventrally as a cohort. Myosin heavy chain (MyHC) is first immunologically detectable in several eye and branchial arch myofibers between stages 21 and 22, although many tongue and laryngeal muscles do not initiate myosin production until stage 24 or later. Detectable synthesis of the MyHC-S3 isoform, which characterizes myofibers as having "slow" contraction properties, occurs within 1-2 stages of the onset of MyHC synthesis in most head muscles, with tongue and laryngeal muscles being substantially delayed. Such a prolonged, 2- to 3-day period of regulatory gene expression preceding the onset of myosin production contrasts with the interval seen in muscles developing in axial (approximately 18 hr) and wing (approximately 1-1.5 days) locations, and is unique to head muscles. This finding suggests that ongoing interactions between head myoblasts and their surroundings, most likely neural crest cells, delay myoblast withdrawal from the mitotic pool. These descriptions define a spatiotemporal pattern of muscle regulatory gene and myosin heavy chain expression unique to head muscles. This pattern is independent of origin (somitic vs. unsegmented paraxial vs. prechordal mesoderm), position (extraocular vs. branchial vs. subpharyngeal), and fiber type (fast vs. slow) and is shared among all muscles whose precursors interact with cephalic neural crest populations. Dev Dyn 1999;216:96-112.
منابع مشابه
اثر حفاظت قلبی فعالیت بدنی اختیاری بر تغییرات بیان ژن زنجیره سنگین میوزین قلبی ناشی از القاء دوکسوربیسین در رات های مدل سالمندی
Background & Aims: Despite confirmed effectiveness of forced exercise training in reducing doxorubicin-induced cardiotoxicity, the role of voluntary physical activity in reducing doxorubicin-induced cardiotoxicity, especially in the elderly, still has not been investigated properly. The aim of this study was to investigate the protective effect of cardiac protection caused by voluntary phy...
متن کاملPrdm1 (Blimp-1) and the Expression of Fast and Slow Myosin Heavy Chain Isoforms during Avian Myogenesis In Vitro
BACKGROUND Multiple types of fast and slow skeletal muscle fibers form during early embryogenesis in vertebrates. In zebrafish, formation of the earliest slow myofibers in fin muscles requires expression of the zinc-finger transcriptional repressor Prdm1 (also known as Blimp1). To further understand how the role of Prdm1 in early myogenesis may vary through evolution and during development, we ...
متن کاملNormal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm.
Our research assesses the ability of three trunk mesodermal populations -- medial and lateral halves of newly formed somites, and presomitic (segmental plate) mesenchyme -- to participate in the differentiation and morphogenesis of craniofacial muscles. Grafts from quail donor embryos were placed in mesodermal pockets adjacent to the midbrain-hindbrain boundary, prior to the onset of neural cre...
متن کاملMyosin heavy chain in avian muscular dystrophy corresponds to the neonatal isozyme.
We have previously demonstrated, based on comparison of homologous amino acid sequences and of two-dimensional CNBr peptide gel patterns, that the myosin heavy chain in pectoralis muscles of Storrs, Connecticut dystrophic chickens is different from that of their normal controls (Huszar, G., Vigue, L., De-Lucia, J. Elzinga, M., and Haines, J. (1985) J. Biol. Chem. 260, 7429-7434). Others have sh...
متن کاملInnervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers
The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental dynamics : an official publication of the American Association of Anatomists
دوره 216 2 شماره
صفحات -
تاریخ انتشار 1999