Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium
نویسندگان
چکیده
Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional research on the USP-Sir2 transcriptional unit of B. megaterium could help explain mammalian acetate metabolism in glucose-limiting conditions such as caloric restriction. Finally, the deep-rooted position of B. megaterium in the phylogeny of Bacillus species makes the investigation of the functional coupling acetate utilization and stress response compelling.
منابع مشابه
Functional Annotation of Two Hypothetical Proteins Reveals Valuable Proteins Involved in Response to Salinity: An in silico Approach
Through the exponential development in the specification of sequences and structures of proteins by genome sequencing and structural genomics approaches, there is a growing demand for valid bioinformatics methods to define these proteins function. In this study, our objective is to identify the function of unknown proteins from UCB-1 pistachio rootstock and specify their class...
متن کاملComparative proteomics analysis of a novel g-radiation-resistant bacterium wild-type Bacillus megaterium strain WHO DQ973298 recovering from 5 KGy g-irradiation
In order to examine radiation-induced proteins in an extremely radio-resistant bacterium, it became possibleto perform comparative proteomic analysis on radio-resistance Bacillus megaterium WHO as a wildtypestrain for the first time. Variation in cellular proteins profiles of the Bacillus megaterium WHO after 5KGy γ-irradiation were analyzed by two-dimensional poly acryl amide...
متن کاملComplete Genome of Bacillus megaterium Siphophage Staley
Siphophage Staley was isolated because of its ability to grow on Bacillus megaterium. Here we report the complete genome and annotation of phage Staley and describe core features. Among its interesting genes is one encoding an SleB germination protein.
متن کاملComplete Genome of Bacillus megaterium Podophage Pony
Bacillus megaterium podophage Pony was isolated from a soil sample collected in College Station, TX. Here, we report the sequencing and annotation of the 39,844-bp genome of phage Pony and describe the major features identified.
متن کاملComplete Genome Sequence of Bacillus megaterium Myophage Mater
Bacillus megaterium is a ubiquitous, soil inhabiting Gram-positive bacterium that is a common model organism and is used in industrial applications for protein production. The following reports the complete sequencing and annotation of the genome of B. megaterium myophage Mater and describes the major features identified.
متن کامل