Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls

ثبت نشده
چکیده

Nitrite (NO2 ) can accumulate during nitrification in soil following fertilizer application. While the role of NO2 as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a function of NO2 levels under aerobic conditions. The current study investigated these kinetics as influenced by soil physical and biochemical factors in soils from cultivated and uncultivated fields in Minnesota, USA. A linear response of N2O production rate (PN2O) to NO2 was observed at concentrations below 60 lg N g 1 soil in both nonsterile and sterilized soils. Rate coefficients (Kp) relating PN2O to NO2 varied over two orders of magnitude and were correlated with pH, total nitrogen, and soluble and total carbon (C). Total C explained 84% of the variance in Kp across all samples. Abiotic processes accounted for 31–75% of total N2O production. Biological reduction of NO2 was enhanced as oxygen (O2) levels were decreased from above ambient to 5%, consistent with nitrifier denitrification. In contrast, nitrate (NO3 )-reduction, and the reduction of N2O itself, were only stimulated at O2 levels below 5%. Greater temperature sensitivity was observed for biological compared with chemical N2O production. Steady-state model simulations predict that NO2 levels often found after fertilizer applications have the potential to generate substantial N2O fluxes even at ambient O2. This potential derives in part from the production of N2O under conditions not favorable for N2O reduction, in contrast to N2O generated from NO3 reduction. These results have implications with regard to improved management to minimize agricultural N2O emissions and improved emissions assessments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions.

Nitrous oxide can be a harmful by-product in nitrogen removal from wastewater. Since wastewater treatment systems operate under different aeration regimens, the influence of different oxygen concentrations and oxygen fluctuations on denitrification was studied. Continuous cultures of Alcaligenes faecalis TUD produced N2O under anaerobic as well as aerobic conditions. Below a dissolved oxygen co...

متن کامل

Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha.

Use of Clark-type electrodes has shown that, in cells of Thiosphaera pantotropha, the nitrous oxide reductase is active in the presence of O2, and that the two gases involved (N2O, O2) are reduced simultaneously, but with mutual inhibition. Reduction of nitrate, or nitrite, to N2O under aerobic conditions involves NO as an intermediate, as judged by trapping experiments with the ferric form of ...

متن کامل

Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates.

A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only un...

متن کامل

Role of ergothioneine on S-nitrosoglutathione catabolism.

Ergothioneine (ESH) is a low-molecular-mass thiol present in millimolar concentrations in a limited number of tissues, including erythrocytes, kidney, seminal fluid and liver; however, its biological function is still unclear. In the present study we investigated the role of ESH in the catabolism of S-nitrosoglutathione (GSNO). The results show that: (1) GSNO decomposition is strongly influence...

متن کامل

Nitrifying and denitrifying pathways of methanotrophic bacteria.

Nitrous oxide, a potent greenhouse gas and ozone-depleting molecule, continues to accumulate in the atmosphere as a product of anthropogenic activities and land-use change. Nitrogen oxides are intermediates of nitrification and denitrification and are released as terminal products under conditions such as high nitrogen load and low oxygen tension among other factors. The rapid completion and pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007